[1] Bhushan B. Biomimetics: Bioinspired Hierarchical-
Structured Surfaces for Green Science and Technology, Springer-Verlag, Heidelberg, Germany, 2012.
[2] Ebensteina D M, Pruitt L A. Nanoindentation of biological materials. Nanotoday, 2006, 1, 26–33.
[3] Pathak S, Swadener J G, Kalidindi S R, Courtland HW, Jepsen K J, Goldman HM. Measuring the dynamic me-chanical response of hydrated mouse bone by nanoindenta-tion. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 34–43.
[4] Rettler E, Hoeppener S, Sigusch B W, Schubert U S. Map-ping the mechanical properties of biomaterials on different length scales: Depth-sensing indentation and AFM based nanoindentation. Journal of Materials Chemistry B, 2013, 1, 2789–2806.
[5] Donnelly E, Baker S P, Boskey A L, van der Meulen M C H. Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. Journal of Biomedical Materials Research A, 2006, 77, 426–435.
[6] Sun J Y, Tong J. Fracture toughness properties of three different biomaterials measured by nanoindentation. Journal of Bionic Engineering, 2007, 4, 11–17.
[7] Bhushan B. Springer Handbook of Nanotechnology, 3rd ed, Springer-Verlag, Heidelberg, Germany, 2010.
[8] Zhang Y F, Bai S L, Li X K, Zhang Z. Viscoelastic properties of nanosilica- filled epoxy composites investigated by dy-namic nanoindentation. Journal of Polymer Science B: Polymer Physics, 2009, 47, 1030–1038.
[9] Loubet J L, Oliver W C, Lucas B N. Measurement of the loss tangent of low-density polyethylene with nanoindentation technique. Journal of Materials Research, 2000, 15, 1195–1198.
[10] Hu K, Radhakrishnan P, Patel R V, Mao J J. Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle. Journal of Structural Biology, 2001, 136, 46–52.
[11] Odegard G M, Bandorawalla T, Herring H M, Gates T S. Characterisation of viscoelastic properties of polymeric materials through nanoindentation. Experimental Mechanics, 2005, 45, 130–136.
[12] Bouaita N, Bull S J, Palacio J F, White J R. Dynamic nanoindentation of some polyolefins. Polymer Engineering & Science, 2006, 46, 1160–1172.
[13] Mohanty B, Katti K S, Katti D R, Verma D. Dynamic nanomechanical response of nacre. Journal of Materials Research, 2006, 21, 2045–2051.
[14] Faingold A, Cohen S R, Wagner H D. Nanoindentation of osteonal bone lamellae. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 198–206.
[15] Jeng Y R, Mao C P, Wu K T. Instrumented indentation in-vestigation on the viscoelastic properties of porcine cartilage. Journal of Bionic Engineering, 2013, 10, 522–531.
[16] Pethica J B, Oliver W C. Tip surface interactions in STM and AFM. Physica Scripta, 1987, T19A, 61–66.
[17] Asif S A S, Pethica J B. Nano-scale viscoelastic properties of polymer materials. In: Cammarata R C, Nastasi M, Busso E P, Oliver W C (eds). Thin Films—Stresses and Mechanical Properties, VII ed, Material Research Society Symposium Proceedings, 1998, 505, 103.
[18] Hayes S A, Goruppa A A, Jones F R. Dynamic nanoinden-tation as a tool for the examination of polymeric materials. Journal of Materials Research, 2004, 19, 3298–3306.
[19] Lee C S, Jho J Y, Choi K, Hwang T W. Dynamic mechanical behavior of ultra-high molecular weight polyethylene irra-diated with gamma rays. Macromolecular Research, 2004, 12, 141–143.
[20] Park K, Mishra S, Lewis G, Losby J, Fan Z F, Park J B. Quasi-static and dynamic nanoindentation studies on
highly crosslinked ultra-high-molecular-weight polyethyl-ene. Biomaterials, 2004, 25, 2427–2436.
[21] Yamashita J, Furman B R, Rawls H R, Wang X, Agrawal C M. The use of dynamic mechanical analysis to assess the viscoelastic properties of human cortical bone. Journal of Biomedical Materials Research Part B, 2001, 58, 47–53.
[22] Tang B, Ngan A H W, Lu W W. An improved method for the measurement of mechanical properties of bone by nanoin-dentation. Journal of Materials Science: Materials in Medicine, 2007, 18, 1875–1881.
[23] Ahearne M, Yang Y, Then K, Liu K. An indentation tech-nique to characterize the mechanical and viscoelastic prop-erties of human and porcine corneas. Annals of Biomedical Engineering, 2007, 35, 1608–1616.
[24] Stempfle P, Pantale O, Njiwa R K, Rousseau M, Lopez E, Bourrat X. Friction-induced sheet nacre fracture: Effects of nano-shocks on cracks location. International Journal of Nanotechnology, 2007, 4, 712–729.
[25] Franke O, Göken M, Hodge A M. The nanoindentation of soft tissue: Current and developing approaches. JOM, 2008, 60, 49–53.
[26] Chen P Y, Lin A Y, Lin Y S, Seki Y, Stokes A G, Peyras J, Olevsky E A, Meyers M A, McKittrick J. Structure and mechanical properties of selected biological materials. Journal of the Mechanical Behavior of Biomedical Materi-als, 2008, 1, 208–226.
[27] Fratzl P. Hierarchical structure and mechanical adaptation of biological materials. In: Reis R L, Weiner S (eds). Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Ma-terials and Processing Routes, Kluwer Academic Publishers, New York, USA, 2005, 15–34.
[28] Chen Q, Pugno N M. Bio-mimetic mechanisms of natural hierarchical materials: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 3–33.
[29] Yourdkhani M, Pasini D, Barthelat F. Multiscale mechanics and optimization of gastropod shells. Journal of Bionic En-gineering, 2011, 8, 357–368.
[30] Richter B I, Kellner S, Menzel H, Behrens P, Denkena B, Ostermeier S, Hurschler C. Mechanical characterization of nacre as an ideal-model for innovative new endoprosthesis materials. Archives of Orthopaedic and Trauma Surgery, 2011, 131, 191–196.
[31] Meyers M A, Chen P Y, Lin A Y M, Seki Y. Biological ma-terials: Structure and mechanical properties. Progress in Materials Science, 2008, 53, 1–206.
[32] Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004, 19, 3–20.
[33] Bobji M S, Biswas S K, Pethica J B. Effect of roughness on the measurement of nanohardness: A computer simulation study. Applied Physics Letters, 1997, 71, 1059–1061.
[34] Enders S, Barbakadse N, Gorb S N, Arzt E. Exploring bio-logical surfaces by nanoindentation. Journal of Materials and Research, 2004, 19, 880–887.
[35] Sun J Y, Tong J, Zhou J. Application of nano-indenter for investigation of the properties of the elytra cuticle of the dung beetle (Copris ochus Motschulsky). IEE Proceedings: Nanobiotechnology, 2006, 153, 129–133.
[36] Katti K S, Katti D R, Mohanty B. Biomimetic lessons learnt from nacre. In: Amitava M (ed). Biomimetics Learning from Nature, InTech, Rijeka, Croatia, 2010, 193–216.
|