[1] Langer R. New methods of drug delivery. Science, 1990, 249, 1527–1533.
[2] Huang Y C, Lam U I. Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. Journal of the Chi-nese Chemical Society, 2011, 58, 779–785.
[3] Slowing I I, Vivero-Escoto J L, Wu C W, Lin V S. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug De-livery Reviews, 2008, 60, 1278–1288.
[4] Xiao B L, Ma Z Y, Bl J. Creep behavior of TiBw/Ti and (TiBw + TiCp)/Ti in situ composite. Journal of Materials Science Letters, 2002, 21, 859–861.
[5] Peter M, Ganesh N, Selvamurugan N, Nair S V, Furuike T, Tamura H, Jayakumar R. Preparation and characterization of chitosangelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 2010, 80, 687–694.
[6] Nie H, Wang C H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Journal of controlled release, 2007, 120, 111–121.
[7] Saleem I Y, Vordermeier M, Barralet J E, Coombes A G. Improving peptide-based assays to differentiate between vaccination and Mycobacterium bovis infection in cattle using nanoparticle carriers for adsorbed antigens. Journal of controlled release, 2005, 102, 551–561.
[8] Matsumoto T, Okazaki M, Inoue M, Yamaguchi S, Kusun-ose T, Toyonaga T, Hamada Y, Takahashi J. Hydroxyapatite particles as a controlled release carrier of protein. Biomate-rials, 2004, 25, 3807–3812.
[9] Sibilla P, Sereni A, Aguiari G, Banzi M, Manzati E, Mischi-ati C, Trombelli L, del Senno L. Effects of a hydroxyapa-tite-based biomaterial on gene expression in osteoblast-like cells. Journal of Dental Research, 2006, 85, 354–358.
[10] Dasgupta S, Bandyopadhyay A, Bose S. Reverse mi-celle-mediated synthesis of calcium phosphate nanocarriers for release of bovine serum albumin. Acta Biomaterialia, 2009, 5, 3112–3121.
[11] Liu T Y, Chen S Y, Liu D M, Liou S C. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. Journal of Controlled Release, 2005, 107,112–121.
[12] Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi C L. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Advanced Functional Materials, 2007, 17, 2180–2188.
[13] Zhu X, Eibl O, Scheideler L, Geis-Gerstorfer J. Characteri-zation of nano hydroxyapatite/collagen surfaces cellular behaviors. Journal Biomedical Materials Reseach A, 2006, 79, 114–127.
[14] Zhu X L, Eibl O, Berthold C, Scheideler, L, Geis-Gerstorfer. Some fundamental aspects of mechanics of nanocomposite materials and structural members. Journal of Nanotechnol-ogy, 2006, 17, 2711–2721.
[15] Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Shi Z, Tang R. Role of hydroxyapatite nanoparticle size in bone cell pro-liferation. Journal of Materials Chemistry, 2007, 17, 3780–3787.
[16] Y Mizushima, T Ikoma, J Tanaka, K Hoshi, T Ishihara, Y Ogawa, A Ueno. Injectable porous hydroxyapatite mi-croparticles as a new carrier for protein and lipophilic drugs. Journal of Controlled Release, 2006, 110, 260–265.
[17] Liu Q, De Wijn J R, Bakker D, Van Blitterswijk C A. Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable com-posite. Journal of Materials science: Materials in Medicine, 1996, 7, 551–557.
[18] Murugan R, Ramakrishna S. Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite. Biomaterials, 2004, 25, 3073–3080.
[19] D’Andrea S C, Fadeev A Y. Covalent surface modification of calcium hydroxyapatite using n-Alkyl- and n-Fluoroalky- lphosphonic acids. Langmuir, 2003, 19, 7904–7910.
[20] Borum-Nicholas L, Wilson Jr O C. Surface modification hydroxyapatite. Part I. Dodecyl alcohol. Biomaterials, 2003, 24, 3671–3679.
[21] Vega E D, Narda G E, Ferretti F H. Adsorption of citric acid from dilute aqueous solutions by hydroxyapatite. Journal of Colloid and Interface Science, 2003, 268, 37–42.
[22] Borum L, Wilson Jr O C. Surface modification of hy-droxyapatite. Part II. Silica. Biomaterials, 2003, 24, 3681–3688.
[23] Liu Q, de Wijn J R, van Blitterswijk C A. Covalent bonding of PMMA, PBMA, and poly(HEMA) to hydroxyapatite particles. Journal of Biomedical Material Research, 1998, 40, 257–263.
[24] Liu Q, de Wijn J R, de Groot K, van Blitterswijk C A. Sur-face modification of nano-apatite by grafting organic polymer. Biomaterials, 1998, 19, 1067–1072.
[25] Theresa B, Price S L. Dimer or catemer? Low-energy crystal packings for small carboxylic acids. Journal Physical Chemistry, 2000, 104, 2647–2655.
[26] Eom J M, Seo M J, Baek J Y, Chu H, Han S H, Min T S, Cho C S, Yun C H. Alpha-eleostearic acid induces auto-phagy-dependent cell death through targeting AKT/mTOR and ERK1/2 signal together with the generation of reactive oxygen species. Biochemical and Biophysical Research Communications, 2010, 391, 903–908.
[27] Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomaterialia, 2011, 7, 2769–2781.
[28] öner M, Yetiz E, Ay E. Ibuprofen release from porous hy-droxyapatite tablets. Ceramics International, 2011, 37, 2117–2125.
[29] Cosijns A, Vervaet C, Luyten J, Mullens S, Siepmann F, Van Hoorebeke L, Masschaele B, Cnudde V, Remon J P. Porous hydroxyapatite tablets as carriers for low-dosed drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 498–506.
[30] Baradari H, Damia C, Dutreih-Colas M, Laborde E, Pecout N, Champion E, Chulia D, Viana M. Calcium phosphate porous pellets as drug delivery systems: Effect of drug car-rier composition on drug loading and in vitro release. Journal of the European Ceramic Society, 2012, 32, 2679–2690.
[31] öner M, Yetiz E, Ay E. Ibuprofen release from porous hy-droxyapatite tablets. Ceramics International, 2011, 37, 2117–2125.
[32] Gbureck U, Vorndran E, Müller F A, Barralet J E. Low temperature direct 3D printed bioceramics and biocompo-sites as drug release matrices. Journal of Controlled Release, 2007, 122, 173–180.
[33] Lu P, Fan H, Liu Y, Cao L, Wu X, Xu X. Controllable bio-degradability, drug release behavior and hemocompatibility of PTX-eluting magnesium stents. Colloids and Surfaces B: Biointerfaces, 2011, 83, 23–28.
|