[1] Kang L, Chung B G, Langer R, Khademhosseini A. Micro-fluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today, 2008, 13, 1–13.
[2] Kenis P J A, Ismagilov R F, Whitesides G M. Microfabrica-tion inside capillaries using multiphase laminar flow pat-terning. Science, 1999, 285, 83–85.
[3] Wu W, Hansen C J, Aragón A M, Geubelle P H, White S R, Lewis J A. Direct-write assembly of biomimetic microvas-cular networks for efficient fluid transport. Soft Matter, 2010, 6, 739.
[4] Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam M R, Weigl B H. Microfluidic diagnostic technologies for global public health. Nature, 2006, 442, 412–418.
[5] Woias P. Micropumps—past, progress and future prospects. Sensors and Actuators B: Chemical, 2005, 105, 28–38.
[6] Kim T, Cho Y H. A pumpless cell culture chip with the constant medium perfusion-rate maintained by balanced droplet dispensing. Lab On A Chip, 2011, 11, 1825–1830.
[7] Lynn N S, Dandy D S. Passive microfluidic pumping using coupled capillary/evaporation effects. Lab On A Chip, 2009, 9, 3422–3429.
[8] Osborn J L, Lutz B, Fu E, Kauffman P, Stevens D Y, Yager P. Microfluidics without pumps: Reinventing the T-sensor and H-filter in paper networks. Lab On A Chip, 2010, 10, 2659–2665.
[9] Zimmermann M, Schmid H, Hunziker P, Delamarche E. Capillary pumps for autonomous capillary systems. Lab On A Chip, 2007, 7, 119–125.
[10] Bischel L L, Young E W, Mader B R, Beebe D J. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials, 2013, 34, 1471–1477.
[11] Khnouf R, Beebe D J, Fan Z H. Cell-free protein expression in a microchannel array with passive pumping. Lab On A Chip, 2009, 9, 56–61.
[12] Resto P J, Berthier E, Beebe D J, Williams J C. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices. Lab On A Chip, 2012, 12, 2221–2228.
[13] Walker G, Beebe D J. A passive pumping method for mi-crofluidic devices. Lab On A Chip, 2002, 2, 131–134.
[14] Du Y, Shim J, Vidula M, Hancock M J, Lo E, Chung B G, Borenstein J T, Khabiry M, Cropek D M, Khademhosseini A. Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device. Lab On A Chip, 2009, 9, 761–767.
[15] He J, Du Y, Villa-Uribe J L, Hwang C, Li D, Khadem-hosseini A. Rapid generation of biologically relevant hy-drogels containing long-range chemical gradients. Advanced Functional Materials, 2010, 20, 131–137.
[16] Huh D, Matthews B D, Mammoto A, Montoya-Zavala M, Hsin H Y, Ingber D E. Reconstituting organ-level lung functions on a chip. Science, 2010, 328, 1662–1668.
[17] Sung J H, Esch M B, Prot J M, Long C J, Smith A, Hickman J J, Shuler M L. Microfabricated mammalian organ systems and their integration into models of whole animals and hu-mans. Lab On A Chip, 2013, 13, 1201–1212.
[18] Kim S, Lee H, Chung M, Jeon N L. Engineering of func-tional, perfusable 3D microvascular networks on a chip. Lab On A Chip, 2013, 13, 1489–1500.
[19] Wu W, Hansen C J, Aragón A M, Geubelle P H, Whitebd S R, Lewis J A. Direct-write assembly of biomimetic microvas-cular networks for efficient fluid. Soft Matter, 2010, 6, 739–742.
[20] He J, Mao M, Liu Y, Shao J, Jin Z, Li D. Fabrication of nature-inspired microfluidic network for perfusable tissue constructs. Advanced Healthcare Materials, 2013, 2, 1108–1113.
[21] Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp J M, Khademhosseini A. A cell-laden microfluidic hydrogel. Lab On A Chip, 2007, 7, 756–762.
[22] Noblin X, Mahadevan L, Coomaraswamy I A, Weitz D A, Holbrook N M, Zwieniecki M A. Optimal vein density in artificial and real leaves. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9140–9144.
[23] Hwang C M, Sim W Y, Lee S H, Foudeh A M, Bae H, Lee S H, Khademhosseini A. Benchtop fabrication of PDMS mi-crostructures by an unconventional photolithographic method. Biofabrication, 2010, 2, 045001.
[24] Baker B M, Trappmann B, Stapleton S C, Toro E, Chen C S. Microfluidics embedded within extracellular matrix to de-fine vascular architectures and pattern diffusive gradients. Lab On A Chip, 2013, 13, 3246–3252.
[25] Chen H, Cornwell J, Zhang H, Lim T, Resurreccion R, Port T, Rosengarten G, Nordon R E. Cardiac-like flow generator for long-term imaging of endothelial cell responses to circula-tory pulsatile flow at microscale. Lab On A Chip, 2013, 13, 2999–3007.
[26] Hsu Y H, Moya M L, Hughes C C, George S C, Lee A P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue ar-rays. Lab On A Chip, 2013, 13, 2990–2998.
[27] Mu X, Zheng W, Xiao L, Zhang W, Jiang X. Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab On A Chip, 2013, 13, 1612–1618.
[28] Moya M L, Hsu Y H, Lee A P, Hughes C C, George S C. In vitro perfused human capillary networks. Tissue Engineer-ing Part C: Methods, 2013, 19, 730–737.
[29] Schimek K, Busek M, Brincker S, Groth B, Hoffmann S, Lauster R, Lindner G, Lorenz A, Menzel U, Sonntag F, Walles H, Marx U, Horland R. Integrating biological vas-culature into a multi-organ-chip microsystem. Lab On A Chip, 2013, 13, 3588–3598.
|