[1] Mullender M G, Huiskes R. Proposal for the regulatory mechanism of Wolff’s law. Journal of Orthopaedic Re-search, 1995, 13, 503–512.
[2] Huiskes R, Ruimerman R, Van Lenthe G H, Janssen J D. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature, 2000, 405, 704–706.
[3] Gong H, Zhu D, Gao J Z, Lv L W, Zhang X Z. An adaptation model for trabecular bone at different mechanical levels. Biomedical Engineering Online, 2010, 9, 32.
[4] Ruimerman R, Van Rietbergen B, Hilbers P, Huiskes R. A 3-dimensional computer model to simulate trabecular bone metabolism. Biorheology, 2003, 40, 315–320.
[5] Johnell O, Kanis J A. Epidemiology of osteoporotic frac-tures. Osteoporosis International, 2005, 16, s3–s7.
[6] Weinans H, Huiskes R, Grootenboer H J. Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling. Journal of Biomechanical Engineer-ing–Transactions of the ASME, 1994, 116, 393–400.
[7] Gong H, Wu W, Fang J, Dong X, Zhao M S, Guo T T. Effects of materials of cementless femoral stem on the functional adaptation of bone. Journal of Bionic Engineering, 2012, 9, 66–74.
[8] Zhu X H, Gong H, Gao B Z. The application of topology optimization on the quantitative description of the external shape of bone structure. Journal of Biomechanics, 2005, 38, 1612–1620.
[9] Weinans H, Huiskes R, Grootenboer H J. The behavior of adaptive bone-remodeling simulation models. Journal of Biomechanics, 1992, 25, 1425–1441.
[10] Bitsakos C, Kerner J, Fisher I, Amis A A. The effect of muscle loading on the simulation of bone remodelling in the proximal femur. Journal of Biomechanics, 2005, 38, 133–139.
[11] Mullender M G, Huiskes R, Weinans H. A physiological approach to the simulation of bone remodeling as a self-organizational control process. Journal of Biomechan-ics, 1994, 27, 1389–1394.
[12] Smith T S, Martin R B, Hubbard M, Bay B K. Surface re-modeling of trabecular bone using a tissue level model. Journal of Orthopaedic Research, 1997, 15, 593–600.
[13] Frost H M. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: The bone modeling problem. Anatomical Record, 1990, 226, 403–413.
[14] Frost H M. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anatomical Record, 1990, 226, 414–422.
[15] Carter D R. Mechanical loading histories and cortical bone remodeling. Calcified Tissue International, 1982, 36, 19–24.
[16] Huiskes R, Weinans H, Grootenboer H J, Dalstra M, Fudala B, Slooff T J. Adaptive bone-remodeling theory applied to prosthetic design analysis. Journal of Biomechanics, 1987, 20, 1135–1150.
[17] Lian Z Q, Guan H, Ivanovski S, Loo Y C, Johnson N, Zhang H W. Finite element simulation of bone remodelling in the human mandible surrounding dental implant. Acta Mechanica, 2011, 217, 335–345.
[18] Zhu X H, Gong H, Bai X F, Wang F R. Application of subsectional relationship between elastic modulus and ap-parent density in the structural simulation of proximal femur. Chinese Journal of Biomedical Engineering, 2003, 22, 250–257. (in Chinese)
[19] Lin C C, Huang L C, Shen P. Na2CaSi2O6-P2O5 based bio-active glasses. Part 1: Elasticity and structure. Journal of Non-Crystalline Solids, 2005, 40–42, 3195–3203.
[20] Lin D, Li Q, Li W, Swain M. Bone remodeling induced by dental implants of functionally graded materials. Journal of Biomedical Materials Research Part B: Applied Biomate-rials, 2010, 92, 430–438.
[21] Hedia H S, Shabara M A N, El-Midany T T, Fouda N. A method of material optimization of cementless stem through functionally graded material. International Journal of Me-chanics and Materials in Design, 2004, 1, 329–346.
[22] Gruen T A, McNeice G M, Amstutz H C. Models of failure of cemented stem-type femoral components, a radiographic analysis of loosening. Clinical Orthopaedics, 1979, 141, 17–27.
[23] Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R, Lehr S, Kainberger F, Gottsauner-Wolf F. Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty-a five-year longitudinal study. The Journal of Bone & Joint Surgery, 2004, 86, 20–26.
[24] Sumitomo N, Koritake K, Hattori T, Morikawa K, Niwa S, Sato K, Niinomi M. Experimental study on fracture fixation with low rigidity titanium alloy: Plate fixation of tibia frac-ture model in rabbit. Journal of materials science, 2008, 19, 1581–1586.
[25] Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. International Journals of Biomaterials, 2011, 836587.
[26] Gong H, Wang L, Zheng D, Fan Y. The potential application of functionally graded material for proximal femoral nail antirotation device. Medical Hypotheses, 2012, 79, 415–417. |