[1] Lombardi A V, Berasi C C, Berend K R. Evolution of tibial fixation in total knee arthroplasty. The Journal of Arthroplasty, 2007, 22, 25–29.
[2] Jazrawi L M, Bai B, Kummer F J, Hiebert R, Stuchin S A. The effect of stem modularity and mode of fixation on tibial component stability in revision total knee arthroplasty. The Journal of Arthroplasty, 2001, 16, 759–767.
[3] Cooke C, Walter W K, Zicat B. Tibial fixation without screws in cementless total knee arthroplasty. The Journal of Arthroplasty, 2006, 21, 237–241.
[4] Hofmann A A, Goldberg T D, Tanner A M, Cook T M. Surface cementation of stemmed tibial components in primary total knee arthroplasty. The Journal of Arthroplasty, 2006, 21, 353–357.
[5] Bertin K C. Tibial component fixation in total knee arthroplasty: a comparison of pegged and stemmed designs. The Journal of Arthroplasty, 2007, 22, 670–678.
[6] Cossetto D J, Gouda A D. Uncemented tibial fixation total knee arthroplasty. The Journal of Arthroplasty, 2011, 26, 41–44.
[7] Yakacki C M, Poukalova M, Guldberg R E, Lin A, Saing M, Gillogly S, Gall K. The effect of the trabecular microstructure on the pullout strength of suture anchors. Journal of Biomechanics, 2010, 43, 1953–1959.
[8] Lin D J, Ju C P, Huang S H, Tien Y C, Yin H S, Chen W C, Chern Lin J H. Mechanical testing and osteointegration of titanium implant with calcium phosphate bone cement and autograft alternatives. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1186–1195.
[9] Poukalova M, Yakacki C M, Guldberg R E, Lin A, Saing M, Gillogly S D, Gall K. Pullout strength of suture anchors: Effect of mechanical properties of trabecular bone. Journal of Biomechanics, 2010, 43, 1138–1145.
[10] Wang Y, Mori R, Ozoe N, Nakai T, Uchio Y. Proximal half angle of the screw thread is a critical design variable affecting the pull-out strength of cancellous bone screws. Clinical Biomechanics, 2009, 24, 781–785.
[11] Gammoudi K, Kharrat M, Dammak M, Abdelmoula R, Ramtani S. Pull-out response of a steel post inserted in a pre-drilled HDPE cylinder: analytical and finite element analyses using pressure-dependent friction. Journal of Adhesion Science and Technology, 2012, 26, 1157–1167.
[12] Linde F, Hvid I, Madsen F. The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens. Journal of Biomechanics, 1992, 25, 359–368.
[13] Keaveny T M, Borchers R E, Gibson L J, Hayes W C. Trabecular bone modulus and strength can depend on specimen geometry. Journal of Biomechanics, 1993, 26, 991–1000.
[14] Guillén T, Zhang Q H, Tozzi G, Ohrndorf A, Christ H J, Tong J. Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1452–1461.
[15] Burgers T A, Mason J, Niebur G, Ploeg H L. Compressive properties of trabecular bone in the distal femur. Journal of Biomechanics, 2008, 41, 1077–1085.
[16] Kelly N, McGarry J P. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 184–197.
[17] Davim J P, Marques N. Dynamical experimental study of friction and wear behaviour of bovine cancellous bone sliding against a metallic counterface in a water lubricated environment. Journal of Materials Processing Technology, 2004, 152, 389–394.
[18] Abdel-Wahab A A, Alam K, Silberschmidt V V. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 807–820.
[19] Lasaygues P, Pithioux M. Ultrasonic characterization of orthotropic elastic bovine bones. Ultrasonics, 2002, 39, 567–573.
Rakotomanana L R, Leyvraz P F, Curnier A, Meister J -J, Livio J -J. Comparison of tibial fixations in total knee arthroplasty: an evaluation of stress distribution and interface micromotions. The Knee, 1994, 1, 91–99. |