[1] Scherge M, Gorb S. Biological Micro- and Nano-tribology Nature’s Solutions, Springer-Verlage, Berlin, Heidelberg, New York, 2001.
[2] Kempson G E, Muir H, Freeman M A R, Swanson S A V. Correlations between stiffness and the chemical constituents of cartilage on the human femoral head. Biochimica et Biophysica Acta, 1970, 215, 70–77.
[3] Kempson G E, Tuke M A, Dingle J T, Horsfield P M. The effect of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochimica et Biophysica Acta, 1976, 428, 741–760.
[4] Maroudas A. Physico-chemical properties of articular car-tilage. In: Freeman M A R (ed). Adult Articular Cartilage, Pitman, Tunbridge Wells, UK, 1979, 215–290.
[5] Grodzinsky A J. Electromechanical and physicochemical properties of connective tissue. Critical Reviews in Bio-medical Engineering, 1983, 9, 133–199.
[6] Mow V C, Ratcliffe A. Structure and function of articular cartilage and meniscus. In: Mow V C, Hayes W C (eds). Basic Orthopaedic Biomechanics, 2nd ed, Lippincott-Raven, Philadelphia, USA, 1997, 113–178.
[7] Mollenhauer J A. Perspectives on articular cartilage biology and osteoarthritis. Injury, 2008, 39, S5–S12.
[8] Christoph E, Mandelbaum B R. Principals of Cartilage Repair, Steinkopff Verlag, Springer, 2008.
[9] Qian S H, Ge S R, Wang Q L. The frictional coefficient of bovine knee articular cartilage. Journal of Bionic Engi-neering, 2006, 3, 79–85.
[10] Liu Y X, Lian Q, He J K, Zhao J N, Jin Z M, Li D C. Study on the microstructure of human articular cartilage/bone in-terface. Journal of Bionic Engineering, 2011, 8, 251–262.
[11] Accardi M A, Dini D, Cann P M. Experimental and nu-merical investigation of the behaviour of articular cartilage under shear loading-interstitial fluid pressurisation and lu-brication mechanisms. Tribology International, 2011, 44, 565–578.
[12] Bostan L, Trunfio-Sfarghiu A M, Verestiuc L, Popa M I, Munteanu F, Rieu J P, Berthier Y. Mechanical and tri-bological properties of poly (hydroxyethyl methacrylate) hydrogels as articular cartilage substitutes. Tribology In-ternational, 2012, 46, 215–224.
[13] Sakai N, Hagihara Y, Furusawa T, Hosoda N, Sawae Y, Murakami T. Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter. Tribology Interna-tional, 2012, 46, 225–236.
[14] Oldinski R A, Ruckh T T, Staiger M P, Popat K C, James S P. Dynamic mechanical analysis and biomineralization of hyaluronan-polyethylene copolymers for potential use in osteochondral defect repair. Acta Biomaterialia, 2011, 7, 1184–1191.
[15] Daniel M E, Duncan E T S, David W L H. Frequency de-pendent viscoelastic properties of knee articular cartilage. Journal of Biomechanics, 2012, 45, S158.
[16] Podczeck F, Almeida S M. Determination of the mechanical properties of pellets and film coated pellets using Dynamic Mechanical Analysis (DMA). European Journal of Phar-maceutical Sciences, 2002, 16, 209–214.
[17] Desrochers J, Amrein M W, Matyas J R. Viscoelasticity of the articular cartilage surface in early osteoarthritis. Os-teoarthritis and Cartilage, 2012, 20, 413–421.
[18] Richard F, Villars M, Thibaud S. Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation. Journal of the Mechanical Behavior of Biomedical Materi-als, 2013, 24, 41–52.
[19] Buckwalter J A, Mankin H J. Articular Cartilage: Part II: Degeneration and osteoarthritis, repair, regeneration, and transplantation. Journal of Bone and Joint Surgery, 1997, 79, 612–632.
[20] Helminen H J, Hyttinen M M, Lammi M J, Arokoski J P, Lapvetelainen T, Jurvelin J, Kiviranta I, Tammi M I. Regu-lar joint loading in youth assists in the establishment and strengthening of the collagen network of articular cartilage and contributes to the prevention of osteoarthrosis later in life: A hypothesis. Journal of Bone and Mineral Metabolism, 2000, 18, 245–257.
[21] Kiviranta P, Lammentausta E, Töyräs J, Kiviranta I, Jurvelin J S. Indentation diagnostics of cartilage degeneration. Os-teoarthritis and Cartilage, 2008, 16, 796–804.
[22] Giordano M A, Schmid S R. Evaluation of individual fiber wear resistance using accelerated life testing. Tribology Transactions, 2012, 55, 140–148.
[23] Wang Q L, Liu J L, Ge S R. Study on biotribological be-havior of the combined joint of CoCrMo and UHMWPE BHA composite in a hip joint simulator. Journal of Bionic Engineering, 2009, 6, 378–386.
[24] Wonga M, Carter D R. Articular cartilage functional his-tomorphology and mechanobiology: A research perspective. Bone, 2003, 33, 1–13.
[25] Meachim G. The effect of scarification on articular cartilage in the rabbit. Journal of Bone and Joint Surgery, British Volume, 1963, 45, 150–161.
[26] DePalma A F, McKeever C D, Subin D K. Process of' repair of articular cartilage demonstrated by histology and autora-diography with tritiated thymidine. Clinical Orthopaedics and Related Research, 1966, 48, 229–242.
[27] Convery F R, Akeson W H, Keown G H. The repair of large osteochondral defects: An experimental study. Clinical Orthopaedics and Related Research, 1972, 82, 253–262.
[28] Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. Journal of Bone and Joint Surgery, American Volume, 1976, 58, 230–233.
[29] Rubak J. Reconstruction of articular cartilage defects with free periosteal grafts. Acta Orthop Scandinav, 1982, 53, 175–180.
[30] Rothwell A G. Synovium transplantation onto the cartilage denuded patellar groove of the sheep knee joint. Orthopedics, 1990, 13, 433–442.
[31] Scully S P, Joyce M E, Heydemann A, Bolander M E. Ar-ticular cartilage healing in vitro: Modulation by bFGF and TGF-β1. Transactions of the Annual Meeting-Orthopaedic Research Society, 1991, 16, 492.
[32] Hori R Y, Mockros L F. Indentation tests of human articular cartilage. Journal of Biomechanics, 1976, 9, 259–268.
[33] Lyyra T, Jurvelin J, Pitkänen P, Väätäinen U, Kiviranta I. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Medical Engineering and Physics, 1995, 17, 395–399.
[34] Hu K, Radhakrishnan P, Mao J J. Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle. Journal of Struc-tural Biology, 2001, 136, 46–52.
[35] Bonnevie E D, Baro V J, Wang L, Burris D L. Fluid load support during localized indentation of cartilage with a spherical probe. Journal of Biomechanics, 2012, 45, 1036–1041.
[36] Fortis A P, Kostopoulos V, Panagiotopoulos E, Tsantzalis S, Kokkinos A. Viscoelastic properties of carti-lage-subchondral bone complex in osteoarthritis. Journal of Medical Engineering and Technology, 2004, 28, 223–226.
[37] Niederauer G G, Niederauer G M, Cullen L C Jr, Athanasiou K A, Thomas J B, Niederauer M Q. Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe. Annals of Biomedical Engi-neering, 2004, 32, 352–359.
[38] Stolz M, Raiteri R, Daniels A U, VanLandingham M R, Baschong W, Aebi U. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophysical Journal, 2004, 86, 3269–3283.
[39] Tomkoria S, Patel R V, Mao J J. Heterogeneous nanome-chanical properties of superficial and zonal regions of ar-ticular cartilage of the rabbit proximal radius condyle by atomic force microscopy. Medical Engineering and Physics, 2004, 26, 815–822.
[40] Duda G N, Kleemann R U, Bluecher U, Weiler A. A new device to detect early cartilage degeneration. American Journal of Sports Medicine, 2004, 32, 693–698.
[41] Vasara A I, Nieminen M T, Jurvelin J S, Peterson L, Lindahl A, Kiviranta I. Indentation stiffness of repair tissue after autologous chondrocyte transplantation. Clinical Ortho-paedics and Related Research, 2005, 433, 233–242.
[42] Park S, Ateshian G A. Dynamic response of immature bo-vine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response. Journal of Biomechanical Engineering, 2006, 128, 623–630.
[43] Dean D, Han L, Grodzinsky A J, Ortiz C. Compressive nanomechanics of opposing aggrecan macromolecules. Journal of Biomechanics, 2006, 39, 2555–2565.
[44] Franke O, Durst K, Maier V, Göken M, Birkholz T, Schneider H, Hennig F, Gelse K. Mechanical properties of hyaline and repair cartilage studied by nanoindentation, Acta Biomaterialia, 2007, 3, 873–881.
[45] Jeng Y R, Lin T T, Wong T Y, Chang H J, Shieh D B. Nano-mechanical properties of fluoride-treated enamel surfaces. Journal of Dental Research, 2008, 87, 381–385.
[46] Park S, Nicoll S B, Mauck R L, Ateshian G A. Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion. Annals of Biomedical Engineering, 2008, 36, 425–434.
[47] Gelse K, Mühle C, Franke O, Park J, Jehle M, Durst K, Göken M, Hennig F, von der Mark K, Schneider H. Cell-based resurfacing of large cartilage defects: long-term evaluation of grafts from autologous transgene-activated periosteal cells in a porcine model of osteoarthritis. Arthritis and Rheumatism, 2008, 58, 475–488.
[48] Franke O, Göken M, Hodge M H. Nanoindentation of soft tissue: Current and developing approaches. JOM, 2008, 60, 49–53.
[49] Fulcher G R, Hukins D W L, Shepherd D E T. Viscoelastic properties of bovine articular cartilage attached to sub-chondral bone at high frequencies. BMC Musculoskeletal Disorders, 2009, 10, 61.
[50] Jeng Y R, Lin T T, Shieh D B. Nanotribological charac-terization of tooth enamel rod affected by surface treatment. Journal of Biomechanics, 2009, 42, 2249–2254.
[51] Park S, Costa K D, Ateshian G A, Hong K S. Mechanical properties of bovine articular cartilage under microscale indentation loading from atomic force microscopy. Pro-ceedings of the Institution of Mechanical Engineers Part H-journal of Engineering in Medicine, 2009, 223, 339–347.
[52] Stolz M, Gottardi R, Raiteri R, Miot S, Martin I, Imer R, Staufer U, Raducanu A, Duggelin M, Baschong W, Daniels A U, Friederich N F, Aszodi A, Aebi U. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nature Nanotechnology, 2009, 4, 186–192.
[53] Lee B, Han L, Frank E H, Chubinskaya S, Ortiz C, Grodzinsky A J. Dynamic mechanical properties of the tis-sue-engineered matrix associated with individual chondro-cytes. Journal of Biomechanics, 2010, 43, 469–76.
[54] Franke O, Göken M, Meyers M, Durst K, Hodge A M. Dynamic nanoindentation of articular porcine cartilage. Materials Science and Engineering C, 2011, 31, 789–795.
[55] Han L, Frank E H, Greene J J, Lee H Y, Hung H H, Grodzinsky A J, Ortiz C. Time-dependent nanomechanics of cartilage. Biophysical Journal, 2011, 100, 1846–1854.
[56] Jeng Y R, Lin T T, Hsu H M, Chang H J, Shieh D B. Human enamel rod presents anisotropic nanotribological properties. Journal of the Mechanical Behavior of Biomedical Materi-als, 2011, 4, 515–522.
[57] Knowles T P J, Buehler M J. Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology, 2011, 6, 469–479.
[58] Liao E, Yaszemski M, Krebsbach P, Hollister S. Tis-sue-engineered cartilage constructs using composite hyalu-ronic acid/collagen I hydrogels and designed poly (propyl-ene fumarate) scaffolds. Tissue Engineering, 2007, 13, 537–550.
[59] Ulrich-Vinther M, Maloney M D, Schwarz E M, Rosier R, O'Keefe R J. Articular cartilage biology. Journal of the American Academy of Orthopaedic Surgeons, 2003, 11, 421–430.
[60] Jakobsen R B, Engebretsen L, Slauterbeck J R. An analysis of the quality of cartilage repair studies. Journal of Bone and Joint Surgery, American Volume, 2005, 87, 2232−2239.
[61] Li L P, Herzog W. Arthroscopic evaluation of cartilage degeneration using indentation testing-Influence of indenter geometry. Clinical Biomechanics (Bristol, Avon), 2006, 21, 420–426.
[62] Simha N K, Jin H, Hall M L, Chiravarambath S, Lewis J L. Effect of indenter size on elastic modulus of cartilage measured by indentation. Journal of Biomechanical Engi-neering, 2007, 129, 767–775.
[63] Kaufman J D, Klapperich C M. Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. Journal of the Mechanical Behavior of Bio-medical Materials, 2009, 2, 312–317.
[64] Johnson K L. Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985.
[65] Pharr G M, Oliver W C, Brotzen F R. On the generality of relationship among contact stiffness, contact area and elastic modulus during indentation. Journal of Materials Research, 1992, 7, 613–617.
[66] Ferry J D. Viscoelastic Properties of Polymers, Wiley, New York, USA, 1980.
[67] NRL-M-011 v3.0. TriboIdenter Users Manual, Hysitron Inc., Minneapolis, MN, USA, 2003.
[68] Antonsson E K, Mann R W. The frequency content of gait. Journal of Biomechanics, 1985, 18, 39–47.
[69] Mow V C, Fithian D C, Kelly M A. Fundamentals of ar-ticular cartilage and meniscus biomechanics. In: Ewing J W (ed). Articular Cartilage and Knee Joint Function, Raven Press, New York, USA, 1–18, 1990.
[70] Gillespie K A, Dickey J P. Determination of the effective-ness of materials in attenuating high frequency shock during gait using filterbank analysis. Clinical Biomechanics (Bris-tol, Avon), 2003, 18, 50–59.
[71] Wilson W, van Donkelaar C C, van Rietbergen R, Huiskes R. The role of computational models in the search for the me-chanical behavior and damage mechanisms of articular car-tilage. Medical Engineering and Physics, 2005, 27, 810–826.
|