[1] Kruse A, Jung R E, Nicholls F, Zwahlen R A, Hämmerle C H, Weber F E. Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide-based and a xenogenic hy-droxyapatite-based bone substitute material. Clinical Oral Implants Research, 2011, 22, 506–511.
[2] Hing K A, Revell P A, Smith N, Buckland T. Effect of sili-con level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials, 2006, 27, 5014–5026.
[3] Doi K, Oue H, Morita K, Kajihara S, Kubo T, Koretake K, Perrotti V, Iezzi G, Piattelli A, Akagawa Y. Development of implant/interconnected porous hydroxyapatite complex as new concept graft material. PLoS One, 2012, 7, e49051.
[4] Lin D J, Ju C P, Huang S H, Tien Y C, Yin H S, Chen W C, Chern Lin J H. Mechanical testing and osteointegration of titanium implant with calcium phosphate bone cement and autograft alternatives. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1186–1195.
[5] Haba Y, Lindner T, Fritsche A, Schiebenhöfer A K, Souf-frant R, Kluess D, Skripitz R, Mittelmeier W, Bader R. Re-lationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis. Open Orthopaedics Journal, 2012, 6, 458–463.
[6] Hasan M S, Ahmed I, Parsons A J, Rudd C D, Walker G S, Scotchford C A. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phos-phate glass and polylactic acid matrix. Journal of Biomaterials Applications, 2013, 28, 354–366.
[7] Han N, Ahmed I, Parsons A J, Harper L, Scotchford C A, Scammell B E, Rudd C D. Influence of screw holes and gamma sterilization on properties of phosphate glass fi-ber-reinforced composite bone plates. Journal Biomaterials Applications, 2013, 27, 990–1002.
[8] Felfel R M, Ahmed I, Parsons A J, Walker G S, Rudd C D. In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods. Journal of the Me-chanical Behavior of Biomedical Materials, 2011, 4, 1462–1472.
[9] Sun C, Jin X, Holzwarth J M, Liu X, Hu J, Gupte M J, Zhao Y, Ma P X. Development of channeled nanofibrous scaffolds for oriented tissue engineering. Macromolecular Bioscience, 2012, 12, 761–769.
[10] Du L C, Meng Y Z, Wang S J, Tjong S C. Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide. Journal of Ap-plied Polymer Science, 2004, 92, 1840–1846.
[11] Jung J H, Ree M, Kim H. Acid- and base-catalyzed hydro-lyses of aliphatic polycarbonates and polyesters. Catalysis Today, 2006, 115, 283–287.
[12] Kim G, Ree M, Kim H, Kim I J, Kim J R, Lee J I. Biological affinity and biodegradability of poly(propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide. Macromolecular Research, 2008, 16, 473–480.
[13] Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide. Polymer Letters, 1969, 7, 287–292.
[14] Qin Y S, Wang X H, Zhang S B, Zhao X J, Wang F S. Fixa-tion of carbon dioxide into aliphatic polycarbonate,cobalt porphyrin catalyzed regio-specific poly(propylene carbonate) with high molecular weight. Journal of Polymer Science: Part A: Polymer Chemistry, 2008, 46, 5959–5967.
[15] Chen L B, Yang S Y, Lin X X, Liu S, Wang D S. Complexes and IPN of CO2 copolymers. Polymers for Advanced Tech-nologies, 2001, 12, 687–692.
[16] Pang H, Liao B, Huang Y H, Cong G M. Studies on the blends of CO2 copolymer. IV. Natural rubber/poly(propylene car-bonate) systems. Journal of Applied Polymer Science, 2002, 86, 2140–2144.
[17] Li Y, Shimizu H. Compatibilization by homopolymer: Sig-nificant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. ACS Applied Materials Interfaces, 2009, 1, 1650–1655.
[18] Wang X Y, Peng S W, Dong L S. Effect of poly(vinyl acetate) (PVAc) on thermal behavior and mechanical properties of poly(3-hydroxybutyrate)/poly(propylene carbonate) (PHB/PPC) blends. Colloid and Polymer Science, 2005, 284, 167–174.
[19] Valappil S P, Misra S K, Boccaccini A R, Roy I. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Review of Medical Devices, 2006, 3, 853–868.
[20] Wu Q, Wang Y, Chen G Q. Medical application of microbial biopolyesters polyhydroxyalkanoates. Artifical Cells Blood Substitutes, 2009, 37, 1–12.
[21] Bridges J F, Critchlow M, Irving M P, Purkiss S C, Taylor D C, Lloyd J B. Radiolabeling, stability, and body distribution in rats, of low molecular weight polylactide homopolymer and polylactide-polyethyleneglycol copolymer. Biomate-rials, 2000, 21, 199–209.
[22] Huang Y, Gao H, Gou M, Ye H, Liu Y, Gao Y, Peng F, Qian Z, Cen X, Zhao Y. Acute toxicity and genotoxicity studies on poly (epsilon-caprolactone)-poly (ethylene glycol)-poly (epsilon-caprolactone) nanomaterials. Mutation Research, 2010, 696, 101–106.
[23] Cenni E, Granchi D, Avnet S, Fotia C, Salerno M, Micieli D, Sarpietro M G, Pignatello R, Castelli F, Baldini N. Bio-compatibility of poly(D,L-lactide-co-glycolide) nanoparti-cles conjugated with alendronate. Biomaterials, 2008, 29, 1400–1411.
[24] Erdmann N, Bondarenko A, Hewicker-Trautwein M, An-grisani N, Reifenrath J, Lucas A, Meyer-Lindenberg A. Evaluation of the soft tissue biocompatibility of MgCa0.8 and surgical steel 316L in vivo: A comparative study in rabbits. Biomedical Engineering Online, 2010, 9, 63.
[25] Taub, R. Liver regeneration: From myth to mechanism. Nature Reviews Molecular Cell Biology, 2004, 5, 836–847.
[26] Taki-Eldin A, Zhou L, Xie H Y, Zheng S. Liver regeneration after liver transplantation. European Surgical Research, 2012, 48, 139–153.
[27] Ma J S, Wang F, Zhou QH, Chen Y, Xu G Y, Zhang X T, Feng C, Li F. Toxicology evaluation and properties of a new biodegradable medical biomaterial. Proceedings of the 2nd International Conference of WMME, Hong Kong, China, 2012, 21–30.
|