[1] Dickinson M H, Farley C T, Full R J. How animals move: An integrative view. Science, 2000, 288, 100–106.
[2] Dai Z D, Yu M, Ji A H, Zhang H. Friction design of animal’s driving pads and its bionics. Chinese Mechanical Engineering, 2005, 16, 1454–1457. (in Chinese)
[3] Dai Z D, Gorb S N, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). Journal of Experimental Biology, 2002, 205, 2479–2488.
[4] Beutel R G, Gorb S N. Ultrastructure of attachment specializations of hexapods (Arthropoda): Evolutionary patterns inferred from a revised ordinal phylogeny. Journal of Zoological Systematics and Evolutionary Research, 2001, 39, 177–207.
[5] Frantsevich L, Ji A H, Dai Z D, Wang J T, Frantsevich L, Gorb S N. Adhesive properties of the arolium of a lantern-fly, Lycorma delicatula (Auchenorrhyncha, Fulgoridae). Journal of Insect Physiology, 2008, 54, 818–827.
[6] Gorb S N. The design of the fly adhesive pad: Distal tenent setae are adapted to the delivery of an adhesive secretion. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 747–752.
[7] Sukontason K L, Bunchu N, Methanitikorn R, Chaiwong T, Kuntalue B, Sukontason K. Ultrastructure of adhesive device in fly in families calliphoridae, muscidae and sarcophagidae, and their implication as mechanical carriers of pathogens. Parasitololgy Research, 2006, 98, 477–481.
[8] Niederegger S, Gorb S N. Friction and adhesion in the tarsal and metatarsal scopulae of spiders. Journal of Comparative Physiology A, 2006, 192, 1223–1232.
[9] Autumn K, Liang Y A, Hsieh S T. Adhesive force of a single gecko foot-hair. Nature, 2000, 405, 681–685.
[10] Wang Z Y, Gu W H, Wu Q, Ji A H, Dai Z D. Morphology and reaction force of toe of geckos freely moving on ceiling and walls. Science in China E, 2010, 53, 1688–1693.
[11] Ruibal R, Ernst V. The structure of the digital setae of lizards. Journal of Morphology, 1965, 117, 271–293.
[12] Gao H, Yao H. Shape Insensitive optimal adhesion of nanoscale fibrillar structures. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7851–7856.
[13] Dai Z D, Gorb S N. A study on contact mechanics of grass-hopper’s pad (Insecta: ORTHOPTERA) by finite element methods. Chinese Science Bulletin, 2009, 54, 549–555.
[14] Federle W, Barnes W J P, Baumgartner W, Drechsler P, Smith J M. Wet but not slippery: boundary friction in tree frog adhesive toe pads. Journal of the Royal Society Interface. 2006, 3, 689–697.
[15] Persson B N J. Wet adhesion with application to tree frog adhesive toe pads and tires. Journal of Physics: Condensed Matter, 2007, 19, 1–6.
[16] Goodwyn P P, Peressadko A, Schwarz H, Kastner V, Gorb S N. Material structure, stiffness, and adhesion: Why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). Journal of Comparative Physiology A, 2006, 192, 1233–1243.
[17] Jiao Y, Gorb S N, Scherge M. Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). Journal of Experimental Biology, 2000, 203, 1887– 1895.
[18] Huber G, Mantz H, Spolenak R. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurement. PNAS, 2005, 102, 16293– 16296.
[19] Federle W, Riehle M, Curtis A S G. An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants. Integrative and Comparative Biology, 2002, 42, 1100–1106.
[20] Dai Z D, Wang Z Y, Ji A H. Dynamics of gecko locomotion: A force measuring array to detect 3D reaction forces. Journal of Experimental Biology, 2011, 214,703–708.
[21] Gasparetto A, Seidl T, Vidoni R. A mechanical model for the adhesion of spiders to nominally flat surfaces. Journal of Bionic Engineering, 2009, 6, 135-142.
[22] Autumn K, Peattie A. Mechanisms of adhesion in geckos. Integrative Comparative Biology, 2002, 42, 1081–1090.
[23] Rizzo N W, Gardner K H, Walls D J, Keiper-Hrynko N M, Ganzke T S, Hallahan D L. Characterization of the structure and composition of gecko adhesive setae. Journal of the Royal Society Interface, 2006, 3, 441–451.
[24] Autumn K, Sitti M, Liang Y A, Peattie A M, Hansen W R, Sponberg S, Kenny T W, Fearing R, Israelachvili J N, Full R J. Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 2002, 99, 12252–12256.
[25] Israelachvili J N. Intermolecular and Surface Forces, Academic Press Limited, London, 1985, 90–91.
[26] Liang Y A, Autumn K, Hsieh S T, Zesch W, ChansW P, Fearing R S, Fulls R J, Kenny T W. Adhesion force measurements on single gecko setae. Solid-State Sensor and Actuator Workshop, Hilton Head, SC, USA, 2000, 33–38.
[27] Tian Y, Pesika N, Zeng H B, Rosenberg K, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences, 2006, 103, 19320–19325.
[28] Arzt E, Gorb S N, Spolenak R. From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10603–10606.
[29] Sun J R, Guo C, Cheng H. Comparison of the setae between the dung beetle Copris ochus and the gecko Gekko gecko and the effects of deformation on their functions. Acta Zoologica Sinica, 2005, 51, 761–767. (in Chinese)
[30] Pesika N S, Tian Y, Zhao B, Rosenberg K, Zeng H B, McGuiggan P, Autumn K, Israelachvile J N. Peel-zone model of tape peeling based on the gecko adhesion system. Journal of Adhesion, 2007, 83, 383–401.
[31] Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology, 2003, 17, 1055–1073.
[32] Menon C, Sitti M. A biomimetic climbing robot based on the gecko. Journal of Bionic Engineering, 2006, 3, 115–125.
[33] Sameoto D, Li Y, Menon C. Multi-scale compliant foot designs and fabrication for use with a spider-inspired climbing robot. Journal of Bionic Engineering, 2008, 5, 189–196.
[34] Daltoriol K A, Horchlerl A D, Gorb S N, Ritzmann R E. A small wall-walking robot with compliant, adhesive feet. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005, 4018–4023.
[35] Daltorio K A, Gorb S, Peressadko A, Horchler A D,
Ritzmann R E, Quinn R D. A robot that climbs walls using micro-structured polymer feet. Climbing and Walking Robots, 2006, 3, 131–138.
[36] Ho A Y Y, Yeo L P, Lam Y C, Rodrguez I. Fabrication and analysis of gecko-inspired hierarchical polymer nanosetae. ACS Nano, 2011, 5, 1897–1906.
[37] Hu S, Jiang H, Xia Z, Gao X. Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: Multiscale modeling. ACS Applied Materials and Interfaces, 2010, 2, 2570–2578.
[38] Kim S, Cheung E, Sitti M. Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives. Langmuir, 2009, 25, 7196–7199.
[39] Murphy M, Kim S, Sitti M. Enhanced adhesion by gecko inspired hierarchical fibrillar adhesives. Applied Materials and Interfaces, 2009, 1, 849–855.
[40] Lee J, Bush B, Maboudian R, Fearing R S. Gecko-Inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir, 2009, 25, 12449–12453.
|