[1] Barthelat F. Biomimetics for next generation materials. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2007, 365, 2907–2919.
[2] Barthelat F, Tang H, Zavattieri P D, Li C M, Espinosa H D. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids, 2007, 55, 306–337.
[3] Meyers M A, Lin A Y M, Chen P Y, Muyco J. Mechanical strength of abalone nacre: Role of the soft organic layer. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 76–85.
[4] Sarikaya M, Aksay I A. Biomimetics: Design and Processing of Materials (AIP Series in Polymers and Complex Materials), American Institute of Physics, New York, USA, 1995.
[5] Wang C H, Zhang L C, Mai Y W. Deformation and fracture of macadamia nuts. I. Deformation analysis of nut-in-shell. International Journal of Fracture, 1994, 69, 51–65.
[6] Fischer-Cripps A C. Introduction to Contact Mechanics, 2nd ed., Springer, New York, USA, 2007.
[7] Caspi E N, Pokroy B, Lee P L, Quintana J P, Zolotoyabko E. On the structure of aragonite. Acta Crystallographica Section B: Structural Science, 2005, 61, 129–132.
[8] Rabiei R, Bekah S, Barthelat F. Failure mode transition in nacre and bone-like materials. Acta Biomaterialia, 2010, 6, 4081–4089.
[9] Kotha S P, Li Y, Guzelsu N. Micromechanical model of nacre tested in tension. Journal of Materials Science, 2001, 36, 2001–2007.
[10] Wang R Z, Suo Z, Evans A G, Yao N, Aksay I A. Deformation mechanisms in nacre. Journal of Materials Research, 2001, 16, 2485–2493.
[11] Currey J D. Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society of London Series B-Biological Sciences, 1977, 196, 443–463.
[12] Jager I, Fratzl P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophysical Journal, 2000, 79, 1737–1746.
[13] Aboudi J. Mechanics of Composite Materials: A Unified Micromechanical Approach, Elsevier, New York, USA, 1991.
[14] Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre. Proceedings of the Royal Society of London Series B-Biological Sciences, 1988, 234, 415–440.
[15] Barthelat F, Li C M, Comi C, Espinosa H D. Mechanical properties of nacre constituents and their impact on mechanical performance. Journal of Materials Research, 2006, 21, 1977–1986.
[16] Barthelat F, Espinosa H D. An experimental investigation of deformation and fracture of nacre-mother of pearl. Experimental Mechanics, 2007, 47, 311–324.
[17] Courtney T H. Mechanical Behavior of Materials, McGraw-Hill, New York, USA, 1990.
[18] Fitoussi J, Guo G, Baptiste D. Determination of a tridimensional failure criterion at the fibre/matrix
interface of an organic-matrix/discontinuous-reinforcement composite. Composites Science and Technology, 1996, 56, 755–760.
[19] Stamblewski C, Sankar B V, Zenkert D. Analysis of three-dimensional quadratic failure criteria for thick composites using the direct micromechanics method. Journal of Composite Materials, 2008, 42, 635–654.
[20] Menig R, Meyers M H, Meyers M A, Vecchio K S. Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Materialia, 2000, 48, 2383–2398.
[21] Lawn B, Bhowmick S, Bush M B, Qasim T, Rekow E D, Zhang Y. Failure modes in ceramic-based layer structures: A basis for materials design of dental crowns. Journal of the American Ceramic Society, 2007, 90, 1671–1683.
[22] Nelder J A, Mead R. A simplex-method for function minimization. Computer Journal, 1965, 7, 308–313.
[23] Weaver P M, Ashby M F. Material limits for shape efficiency. Progress in Materials Science, 1997, 41, 61–128.
|