[1] Brown E N, Sottos N R, White S R. Fracture testing of a self-healing polymer composite. Experimental Mechanics, 2001, 42, 372–379.
[2] Pang I W C, Bond I P. ‘Bleeding composites’ – Damage detection and self-repair using a biomimetic approach. Composites Part A: Applied Science and Manufacturing, 2004, 36, 183–188.
[3] Bhushan B. Biomimetics: Lessons from nature - an overview. Philosophical Transactions of the Royal Society A, 2009, 367, 1445–1486.
[4] Trask R, Bond I. Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Materials and Structures, 2006, 15, 704–710.
[5] Trask R, Williams H, Bond I. Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspiration & Biomimetics, 2007, 2, 1–12.
[6] Toohey K S, Sottos N R, Lewis J A, Moore J S, White S R. Self-healing materials with microvsacular networks. Nature Materials, 2007, 6, 581–585.
[7] Trask R S, Bond I P. Bioinspired engineering study of Plantae vascules for self-healing composite structures. Journal of the Royal Society Interface, 2010, 7, 921–931.
[8] Kessler M. Self-healing: A new paradigm in materials design. Proceedings of the IMechE Part G: Journal of Aerospace Engineering, 2007, 221, 479–495.
[9] Motuku M, Vaida U K, Janowski G M. Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Materials and Structures, 1999, 8, 623–638.
[10] White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Autonomic healing of polymer composites. Nature, 2001, 409, 794–797.
[11] Brown E N, Kessler M R, Sottos N R, White S R. In situ poly(urea-formaldehyde) microencapsulation of decyclopentadiene. Journal of Microencapsulation, 2003, 20, 719–730.
[12] Brown E N, White S R, Sottos N R. Microcapsule induced toughening in a self-healing polymer composite. Journal of Materials Science, 2004, 39, 1703–1710.
[13] Brown E N, White S R, Sottos N R. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – Part I: Manual infiltration. Composites Science and Technology, 2005, 65, 2466–2473.
[14] Brown E N, White S R, Sottos N R. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – Part II: In situ self-healing. Composites Science and Technology, 2005, 65, 2474–2480.
[15] Dry C. Procedures developed for self-repair of polymer matrix composite materials. Composite Structures, 1996, 35, 263–269.
[16] Zako M, Takano N. Intelligent material systems using epoxy particles to repair microcracks and delamination damage in GFRP. Journal of Intelligent Material Systems and Structures, 1999, 10, 836–841.
[17] Kalista S J, Ward T C, Oyetunji Z. Self healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mechanics of Advance Materials and Structures, 2007, 14, 391–397.
[18] Yamagiwa T, Nakayama K, Kiyota S, Tanaka A, Makisaka N. Development of puncture resistance of tire tube. Preprint of Society of Automotive Engineers of Japan, 1997, 279–282.
[19] Nagaya K, Ikai S, Chiba M, Chao X. Tire with self-repairing mechanism. JSME International Journal, 2006, 49, 379–384.
[20] Spiegel Online Auto, [2011-01-18],
http://www.spiegel.de/auto/werkstatt/0,1518,302301,00.html
[21] Luchsinger R, Pedretti A, Steingruber P, Pedretti M. The new structural concept Tensairity: Basic principles. Progress in Structural Engineering, Mechanics and Computations, London, UK, 2004.
[22] Pedretti M, Luscher R. Tensairity-patent – eine pneumatische tenso-struktur. Stahlbau, 2007, 76, 314–319. (in German)
[23] Luchsinger R, Pedretti M, Reinhard A. Pressure induced stability: From pneumatic structures to Tensairity. Journal of Bionics Engineering, 2004, 1, 141–148.
[24] Speck T, Rowe N P, Civeyrel L, Classen-Bockhoff R, Neinhuis C, Spatz H C. The potential of plant biomechanics in functional biology and systematics. In: Stuessey T, Hörandl F, Mayer V (eds.). Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics, Koeltz, Königstein, Germany, 2004, 241–271.
[25] Speck T, Luchsinger R, Busch S, Rüggeberg M, Speck O. Self-healing processes in nature and engineering: Self-repairing biomimetic membranes for pneumatic structures. In: Brebbia C A (eds.). Design and Nature III, WIT Press, Southampton, UK, 2006, 105–114.
[26] Speck O, Luchsinger R, Busch S, Rüggeberg M, Speck T. Self-repairing membranes for pneumatic structures: Transferring nature’s solutions into technical applications. Proceedings of the 5th International Plant Biomechanics Conference, 2006, 1, 115–120.
[27] Busch S, Seidel R, Speck O, Speck T. Morphological aspects of self-repair of lesions caused by internal growth stresses in stems of Aristolochia macrophylla and Aristolochia ringens. Proceedings of the Royal Society B, 2010, 277, 2113–2120.
[28] Busch S, Schmitt K, Erhardt C, Speck T. Analysis of self-repair mechanisms of Phasaeolus vulgaris var. saxa using near-infrared surface enhanced Raman spectroscopy (SERS). Journal of Raman Spectroscopy, 2010, 41, 490–497.
[29] Masselter T, Speck T. Quantitative and qualitative changes in primary and secondary stem organization of Aristolochia macrophylla during ontogeny: Growth analysis and experiments. Journal of Experimental Botany, 2008, 59, 2955 – 2967.
[30] Bohl W. Technische Strömungslehre, 12th ed, Vogel, Würzburg, Germany, 2002. (in German)
Gibson L, Ashby M. Cellular Solids, Cambridge University Press, Cambridge, UK, 1997.
|