[1] Kang B S, Sul Y T, Oh S J, Lee H J, Albrektsson T. XPS, AES and SEM analysis of recent dental implants. Acta Biomaterialia, 2009, 5, 2222–2229.
[2] Park J W, Park K B, Suh J Y. Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae. Biomaterials, 2007, 28, 3306–3313.
[3] Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials Journal, 2007, 23, 844–854.
[4] Stanford C M, Johnson G K, Fakhry A, Gartton D, Mellonig J T, Wagner, W. Outcomes of a fluoride modified implant one year after loading in the posterior-maxilla when placed with the osteotome surgical technique. Applied osseointegration research, 2006, 5, 50–55.
[5] Den Braber E T, de Ruijter J E, Smits H T J, Ginsel L A, von Recum A F, Jansen J A. Effect of parallel surface micro grooves and surface energy on cell growth. Journal of Biomedical Materials Research, 1995, 29, 511–518.
[6] Den Braber E T, de Ruijter J E, Ginsel L A, von Recum A F, Jansen J A. Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimensions. Biomaterials, 1996, 17, 2037–2044.
[7] Linez-Bataillon P, Monchau F, Bigerelle M, Hildebrand H F. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6AL4V substate. Biomolecular Engineering, 2002, 19, 133–141.
[8] Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1 - review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. International Journal of Prosthodontics, 2004, 17, 536–543.
[9] Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2 - review focusing on clinical knowledge of different surfaces. International Journal of Prosthodontics, 2004, 17, 544–564.
[10] Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials, 2010, 31, 5072–5082.
[11] Lim J Y, Dreiss A D, Zhou Z, Hansen J C, Siedlecki C A, Hengstebeck R W, Cheng J, Winograd N, Donah H J. The regulation of integrin mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials, 2007, 28, 1787–1797.
[12] Geckili O, Bilhan H, Bilgin T. A 24-week prospective study comparing the stability of titanium dioxide grit-blasted dental implants with and without fluoride treatment. International Journal of Oral & Maxillofacial Implants, 2009, 24, 684–688.
[13] Meirelles L, Arvidsson A, Albrektsson T, Wennerberg A. Increased bone formation to unstable nano rough titanium implants. Clinical Oral Implants Research, 2007, 18, 326–332.
[14] Meirelles L. On Nano Size Structures for Enhanced Early Bone Formation, PhD thesis, Gothenburg University, Goteborg, Sweden, 2007.
[15] Gao L, Feng B, Wang J, Lu X, Liu D, Qu S, Weng J. Micro/nanostructural porous surface on titanium and bioactivity. Journal of Biomedical Materials Research Part B, 2009, 89, 335–341.
[16] Kubo K, Tsukimura N, Iwasa F, Ueno T, Saruwatari L, Aita H, Chiou W, Ogawa T. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials, 2009, 30, 5319–5329.
[17] Bigerelle M, Anselme K, Noël B, Ruderman I, Hardouin P, Iost A. Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials. 2002, 23, 1563–1577.
[18] Bigerelle M, Anselme K. Topography effects of pure titanium substates on human osteoblasts long-term adhesion. Acta Biomaterialia, 2005, 1, 211–222.
[19] Bigerelle M, Anselme K. A kinetic approach to osteoblast adhesion on biomaterial surface. Journal of Biomedical Materials Research, 2005, 75, 530–540.
[20] Elter P, Sickel F, Ewald A. Nanoscaled periodic surface structures of medical stainless steel and their effect on osteoblast cells. Acta Biomaterialia, 2009, 5, 1468–1473.
[21] Boyan B D, Hummer T W, Dean D D, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996, 17, 137–146.
[22] Li D, Liu B, Wu J, Chen J. Bone interface of dental implants cytologically influenced by a modified sandblasted surface: a preliminary in vitro study. Implant Dentistry, 2001, 10, 132–138.
[23] Uggeri J, Guizzardi S, Scandroglio R, Gatti R. Adhesion of human osteoblasts to titanium: A morpho-functional analysis with confocal microscopy. Micron, 2010, 41, 210–219.
[24] Salido M, Vilches-Perez J I, Gonzalez J L, Vilches J. Mitochondrial bioenergetics and distribution in living human osteoblasts grown on implant surfaces. Histology and Histopathology, 2009, 24, 1275–1286.
[25] Anselme K, Bigerelle M. Topography effects of pure titanium substates on human osteoblasts long-term adhesion. Acta Biomaterialia, 2005, 1, 211–222.
[26] Brunette D M. The effects of implant surface topography on the behavior of cells. The International Journal of Oral & Maxillofacial Implants, 1988, 3, 231–246.
[27] Meirelles L, Currie F, Jacobsson M, Tomas Albrektsson, Ann Wennerberg. The effect of chemical and nano topographical modifications on early stage of osseointegration. The International Journal of Oral & Maxillofacial Implants, 2008, 23, 641–647.
[28] Meirelles L, Melin L, Peltola T, Kjellin P, Kangasniemi I, Currie F, Andersson M, Albrektsson T, Wennerberg A. Effect of hydroxyapatite and Titania nanostructures on Early in vivo bone response. Clinical Implant Dentistry and Related Research, 2008, 10, 245–254.
[29] Mendes V C, Moineddin R, Davies J E. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. Biomaterials, 2007, 28, 4748–4755.
[30] Li Y, Lee I S, Cui F Z, Choi S H. The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium. Biomaterials, 2008, 29, 2025–2032.
Goene R, Testori T, Trisi P. Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants:a histomorphometric study in human maxillae. The International Journal of Periodontics & Restorative Dentistry, 2007, 27, 3–11.
|