[1] Hayes J A, Horne W C, Soderman P T, Bent P H. Airframe noise characteristics of a 4.7% scale DC-10 model. AIAA Paper, 1997, 97-1594.
[2] Soderman P T, Kafyeke F, Boudreau J, Burnside N J, Jaeger S M, Chandrasekharan R. Airframe noise study of a Bom-bardier CRJ-700 aircraft model in the NASA Ames 7- by 10-foot wind tunnel. International Journal of Aeroacoustics, 2004, 3, 1–42.
[3] Chow L C, Mau K, Remy H. Landing gear and high lift devices airframe noise research. AIAA Paper, 2002, 2002-2408.
[4] Ma Z K. Slat noise attenuation using acoustic liner. AIAA Paper, 2005, 2005-3009.
[5] Smith M G, Chow L C, Molin N. Attenuation of slat trailing edge noise using slat gap acoustic liners. AIAA Paper, 2006, 2006-2666.
[6] Choudhari M, Khorrami M R, Lockard D P. Slat cove noise modeling: A posteriori analysis of unsteady RANS simula-tions. AIAA Paper, 2002, 2002-2468.
[7] Takeda K, Ashcroft G B, Zhang X. Unsteady aerodynamics of slat cove flow in a high-lift device configuration. AIAA Paper, 2001, 2001-0706.
[8] Graham R R. The silent flight of owls. Journal of Royal Aeronautics Society, 1934, 38, 837–843.
[9] Lilley G M. A study of the silent flight of the owl. AIAA Paper, 1998, 98-2340.
[10] Kroeger R A, Gruschka H D, Helvey T C. Low speed aerodynamics for ultra-quiet flight. Air Force Flight Dy-namics Laboratory Technical Report, 1971, 71–75.
[11] Bachmann T, Klan S, Baumgartner W, Klaas M, Schroder W, Wagner H. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia. Frontiers in Zoology, 2007, 4, 23.
[12] Nachtigall W, Wedekind F, Dreher A. Hinweise auf Aerodynamische Rauhigkeitseffekte an Vogel-Flogelprofilen. Biona-report 3, Bird Flight – Vogelflug, 1985, 195–218. (in German)
[13] Nachtigall W, Kempf B. Comparative studies on the func-tion of the bastard wing (alula spuria) in the flight biology of birds. Journal of Comparative Physiology, 1971, 71, 326–341.
[14] Meseguer J, Franchini S, Perez-Grande I, Sanz J L. On the aerodynamics of leading-edge high-lift devices of avian wings. Proceedings of the Institution of Mechanical Engi-neers, Part G, Journal of Aerospace Engineering, 2005, 219, 63–68.
[15] Nachtigall W, Klimbingat A. Messung der Flügelgeometrie mit der Profilkamm-Methode und geometrische Flügelkennzeichnung einheimischer Eulen. Biona-report 3, Bird Flight – Vogelflug, 1985, 45–86. (in German)
[16] Biesel W, Butz H, Nachtigall W. Erste Messungen der Flügelgeometrie bei frei gleitfliegenden Haustauben (columbia livia var. domestica) unter Benutzung neu ausgearbeiteter Verfahren der Windkanaltechnik und der Stereophotogrammetrie. Biona-report 3, Bird Flight – Vogelflug, 1985, 139–160. (in German)
[17] Liu T S, Kuykendoll K, Rhew R, Jones S. Avian wing ge-ometry and kinematics. AIAA Paper, 2006, 44, 954–963.
[18] Klan S, Bachmann T, Klaas M, Wagner H, Schroder W. Experimental analysis of the flow field over a novel owl based airfoil. Experiments in Fluids, 2009, 46, 975–989.
[19] Burgmann S, Dannemann J, Schroder W. Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Experiments in Fluids, 2008, 44, 609–622.
|