[1] Shi L, Guo S, Asaka K. Development of a new jellyfish-type underwater microrobot. International Journal of Robotics and Automation, 2011, 26, 229–241.
[2] Guo S, Shi L, Asaka K, Li L. Experiments and characteris-tics analysis of a bio-inspired underwater microrobot. Pro-ceedings of the IEEE International Conference on Mecha-tronics and Automation, Changchun, China, 2009, 3330–3335.
[3] Lin X, Guo S. Development of a spherical underwater robot equipped with multiple vectored water-jet-based thrusters. Journal of Intelligent and Robotic Systems, 2012, 67, 307–321.
[4] Heo S, Wiguna T, Park H C, Goo N S. Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. Journal of Bionic En-gineering, 2007, 4, 151–158.
[5] Villanueva A, Joshi K, Blottman J, Priya S. A bio-inspired shape memory alloy composite (BISMAC) actuator. Smart Materials and Structures, 2010, 19, 025013, 1–17.
[6] Wang Z, Hang G, Li J, Wang Y, Xiao K. A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Journal of Sensors and Actuators A: Physical, 2008, 144, 354–360.
[7] Lee S, Kim K, Park I. Modeling and experiment of a mus-cle-like linear actuator using an ionic polymer–metal com-posite and its actuation characteristics. Journal of Smart Material and Structures, 2007, 16, 583–588.
[8] Liu S, Lin M, Zhang Q. Extensional ionomeric polymer ponductor composite actuators with ionic liquids. Electro-active Polymer Actuators and Devices (EAPAD), Proceed-ings of SPIE, San Diego, California, USA, 2008, 6927, 69270H.
[9] Nakadoi H, Sera A, Yamakita M, Asaka K, Luo Z, Ito K. Integrated actuator-sensor system on patterned IPMC film: consideration of electoric interference. Proceedings of the 4th IEEE International Conference on Mechatronics, Ku-mamoto, Japan, 2006, 4280007.
[10] McGovern S T, Spinks G M, Xi B, Alici G, Truong V, Wal-lace G G. Fast bender actuators for fish-like aquatic robots. Proceedings of SPIE, San Diego, USA, 2008, 6927, 69271L.
[11] Behkam B, Sitti M. Design methodology for biomimetic propulsion of miniature swimming robots. Journal of Dy-namic Systems, Measurement, and Control, 2006, 128, 36–43.
[12] Zhang W, Guo S, Asaka K. A new type of hybrid fish-like microrobot. International Journal of Automation and Computing, 2006, 3, 358–365.
[13] Kamamichi N, Yamakita M, Asaka K, Luo Z. A snake-like swimming robot using IPMC actuator/sensor. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, USA, 2006, 1812–1817.
[14] Kim B, Kim D, Jung J, Park J. A biomimetic undulatory tadpole robot using ionic polymer–metal composite actua-tors. Journal of Smart Material and Structures, 2005, 14, 1579–1585.
[15] Ye X, Su Y, Guo S, Wang L. Design and realization of a remote control centimeter-scale robotic fish. Proceedings of the IEEE/ASME International Conference on Advanced In-telligent Mechatronics, Xi’an, China, 2008, 25–30.
[16] Yim W, Lee J, Kim K J. An artificial muscle actuator for biomimetic underwater propulsors. Journal of Bioinspira-tion and Biomimetics, 2007, 2, S31–S41.
[17] Ye X, Hu Y, Guo S, Su Y. Driving mechanism of a new jellyfish-like microrobot. Proceedings of IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 2008, 563–568.
[18] Yeom S, Oh I. A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Journal of Smart Ma-terials and Structures, 2009, 18, 085002, 1–16.
[19] Villanueva A, Smith C, Priya S. A biomimetic robotic jelly-fish (robojelly) actuated by shape memory alloy composite actuators. Bioinspiration & Biomimetics, 2011, 6, 036004, 1–16.
[20] Pan Q, Guo S, Okada T. A novel hybrid eireless microrobot. International Journal of Mechatronics and Automation, 2011, 1, 60–69.
[21] Carta R, Thoné J, Puers R. A wireless power supply system for robotic capsular endoscopes. Sensors and Actuators A: Physical, 2010, 162, 177–183.
[22] Guo S, Mao S, Shi L, Li M. Development of an amphibious mother spherical robot used as the carrier for underwater microrobots. Proceedings of the ICME International Con-ference on Complex Medical Engineering, Kobe, Japan, 2012, 758–762.
[23] Guo S, Mao S, Shi L, Li M. Design and Kinematic analysis of an amphibious spherical robot. Proceedings of IEEE In-ternational Conference on Mechatronics and Automation, Chengdu, China, 2012, 2214–2219.
[24] Gao B, Guo S, Ye X. Motion-control analysis of ICPF-actuated underwater bomimetic microrobots. Interna-tional Journal of Mechatronics and Automation, 2011, 1, 79–89.
[25] Shi L, Guo S, Asaka K. A bio-inspired underwater micro-robot with compact structure and multifunctional locomo-tion. Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, 2011, 203–208.
[26] Shi L, Guo S, Asaka K. A novel multifunctional underwater microrobot. Proceedings of the IEEE International Con-ference on Robotics and Biomimetics, Tianjin, China, 2010, 873–878.
[27] Shi L, Guo S, Asaka K. A novel butterfly-inspired under-water microrobot with pectoral fins. Proceedings of the IEEE International Conference on Mechatronics and Automation, Beijing, China, 2011, 853–858.
[28] Shi L, Guo S, Asaka K. A novel jellyfish-and butter-fly-inspired underwater microrobot with pectoral fins. In-ternational Journal of Robotics and Automation, 2012, 27, 276–286.
[29] Guo S, Shi L, Xiao N, Asaka K. A biomimetic underwater microrobot with multifunctional locomotion. Robotics and Autonomous Systems, 2012, 60, 1472–1483.
[30] Shi L, Guo S, Li M, Mao S, Xiao N, Gao B, Song Z, Asaka K. A novel soft biomimetic microrobot with two motion atti-tudes. Sensors, 2012, 12, 16732–16758.
[31] Cavallo E, Michelini R, Filaretov V. Conceptual design of an AUV equipped with a three degrees of freedom vectored thruster. Journal of Intelligent Robotic Systems, 2004, 39, 365–391.
[32] Duchemin O, Lorand A, Notarianni M, Valentian D, Chesta E. Multi-channel hall-effect thrusters: mission applications and architecture trade-offs. Proceedings of the 30th Inter-national Electric Propulsion Conference, Florence, Italy, 2007, 1–15.
[33] Ha N S, Goo N S. Propulsion modeling and analysis of a biomimetic swimmer. Journal of Bionic Engineering, 2010, 7, 259–266.
[34] Liu W, Jia X, Wang F, Jia Z. An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin. Sensors and Actuators A: Physical, 2010, 160, 101–108.
[35] Wang Z, Li J, Hang G, Wang Y. A flexible hingeless control surface inspired by aquatic animals. Journal of Bionic En-gineering, 2010, 7, 364–374.
[36] Whitney J P, Wood R J. Conceptual design of flapping-wing micro air vehicles. Bioinspiration & Biomimetics, 2012, 7, 036001.
[37] Turtle. http://en.wikipedia.org/wiki/Turtle
[38] Santos C P, Matos V. Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach. Robotics and Autonomous Systems, 2011, 59, 620–634.
[39] Guo J, Guo S, Xiao N, Ma X, Yoshida S, Tamiya T, Ka-wanishi M. A novel robotic catheter system with force and visual feedback for vascular interventional surgery. Inter-national Journal of Mechatronics and Automation, 2012, 2, 15–24.
[40] Salmasi H, Fotouhi R, Nikiforuk P N. A biologically in-spired controller for trajectory tracking of flexible-joint manipulators. International Journal of Robotics and Auto-mation, 2012, 27, 151–162.
[41] Tang A, Cao Q, Xu C. Design and analysis of an active ball-handling mechanism for soccer robot in roboCup. In-ternational Journal of Robotics and Automation, 2012, 27, 124–136.
|