[1] Kier W M, Stellas M P. The arrangement and function of octopus arm musculature and connective tissue. Journal of Morphology, 2007, 268, 831–843.
[2] Young J Z. The Anatomy of the Nervous System of Octopus Vulgaris, Clarendon Press, Oxford, UK, 1971.
[3] Smith K K, Kier W M. Trunks, tongues, and tentacles: Moving with skeletons of muscle. American Scientist, 1989, 77, 28–35.
[4] Gutfreund Y, Flash T, Yarom Y, Fiorito G, Segev I, Hochner B. Organization of octopus arm movements: A model system for studying the control of flexible arms. The Journal of Neuroscience, 1996, 16, 7297–7307.
[5] Sumbre G, Gutfreund Y, Fiorito G, Flash T, Hochner B. Control of octopus arm extension by a peripheral motor program. Science, 2001, 293, 1845–1848.
[6] Kier W M, Smith A M. The structure and adhesive mechanism of octopus suckers. Integrative and Comparative Biology, 2002, 42, 1146–1153.
[7] Yekutieli Y, Sumbre G, Flash T, Hochner B. How to move with no rigid skeleton? The octopus has the answers. Biologist, 2002, 49, 250–254.
[8] Sumbre G, Fiorito G, Flash T, Hochner B. Neurobiology motor control of flexible octopus arms. Nature, 2005, 433, 595–596.
[9] Gravagne I A, Walker I D. Uniform regulation for a multi-section continuum manipulator. Proceedings of the IEEE International Conference on Robotics & Automation, Lausanne, Switzerland, 2002, 2, 1519–1524.
[10] McMahan W, Jones B, Walker I, Chitrakaran V, Seshadri A, Dawson D. Robotic manipulators inspired by cephalopod limbs. Proceedings of Inaugural CDEN Design Conference, Montreal, Canada, 2004, 1–10.
[11] Packard A. The skin of cephalopods (coleoids): General and special adaptations. In Trueman E R, Clarke M R eds, The Mollusca: Form and Function, Academic Press, San Diego, USA, 1988, 11, 37–67.
[12] Marks P. Robot octopus will go where no sub has gone before. The New Scientist, 2009, 201, 18.
[13] Hou J P, Bonser R H C, Jeronimidis G. Design of a biomimetic skin for an octopus-inspired robot – Part I: Characterising octopus skin. Journal of Bionic Engineering, 2011, 8, 288–296.
[14] Hou J P, Bonser H C R, Jeronimidis G. Design of a biomimetic skin for an octopus-inspired robot – Part II: Development of the skin artefact. Journal of Bionic Engineering, 2011, 8, 297–304.
[15] Cianchetti M, Arienti A, Follador M, Mazzolai B, Dario P, Laschi C. Design concept and validation of a robotic arm inspired by the octopus. Material Science and Engineering C, 2011, 31, 1230–1239.
[16] Smith A M. Negative pressure generated by octopus suckers: A study of the tensile strength of water in nature. Journal of Experimental Biology, 1991, 157, 257–271.
[17] Kier W M, Smith A M. The morphology and mechanics of octopus suckers. The Biological Bulletin, 1990, 178, 126–136.
[18] Nachtigall W. Biological Mechanisms of Attachment: The Comparative Morphology and Bioengineering of Organs for Linkage, Suction, and Adhesion, Springer-Verlag, New York, USA, 1974.
[19] Smith A M. Cephalopod sucker design and the physical limits to negative pressure. Journal of Experimental Biology, 1996, 199, 949–958.
[20] Delgadillo J O V, Delorme, S, El-Ayoubi R, DiRaddo R, Hatzikiriakos S G. Effect of freezing on the passive mechanical properties of arterial samples. Journal of Biomedical Science and Engineering, 2010, 3, 645–652.
[21] Jung H J, Vangipuram G, Fisher M B, Yang G, Hsu S, Bianchi J, Ronholdt C, Woo, S L Y. The effects of multiple freeze–thaw cycles on the biomechanical properties of the human bone-patellar tendon-bone allograft. Journal of Orthopaedic Research, 2011, 29, 1193–1198.
[22] Foutz T L, Stone E A, Abrams C F. Effects of freezing on mechanical properties of rat skin. American Journal of Veterinary Research, 1992, 53, 788–792.
[23] Snedecor G W. Statistical Methods, The Iowa State University Press, USA, 1956.
Su Y W, Ji B H, Huang Y G, Hwang K. Concave biological surfaces for strong wet adhesion. Acta Mechanica Solida Sinica, 2009, 22, 593–604. |