[1] Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N and Fujimura K. The intelligent ASIMO: System overview and integration. IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, Switzerland, 2002, 2478−2483.
[2] McGeer T. Passive dynamic walking. International Journal of Robotics Research, 1990, 9, 62−82.
[3] McGeer T. Dynamics and control of bipedal locomotion. Journal of Theoretical Biology, 1993, 163, 277−314.
[4] Collins S, Ruina A, Tedrake R, Wisse M. Efficient bipedal robots based on passive-dynamic walkers. Science, 2005, 307, 1082−1085.
[5] Coleman M, Ruina A. An uncontrolled toy that can walk but cannot stand still. Physical Review Letters, 1998, 80, 3658−3661.
[6] Collins S H, Ruina A. A bipedal walking robot with efficient and human-like gait. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, 1983−1988.
[7] Wisse M, Schwab A L, van der Linde R Q, van der Helm F C T. How to keep from falling forward: Elementary swing leg action for passive dynamic walkers. IEEE Transactions on Robotics, 2005, 21, 393−401.
[8] Tedrake R, Zhang T W, Fong M, Seung H S. Actuating a simple 3D passive dynamic walker. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and System, New Orleans, USA, 2004, 4656−4661.
[9] Pratt J E. Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots, PhD thesis, Computer Science Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2000.
[10] Huang Q, Nakamura Y, Inamura T. Humanoids walk with feed forward dynamic pattern and feedback sensory reflection. Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001, 4220−4225.
[11] Sugihara T, Nakamura Y, Inoue H. Realtime humanoid motion generation through zmp manipulation based on inverted pendulum control. Proceedings of IEEE International Conference on Robotics and Automation, Washington DC, USA, 2002, 1404−1409.
[12] Grizzle J W, Abba G, Plestan F. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transaction on Automatic Control, 2001, 46, 51−64.
[13] Chevallereau C, Abba G, Aoustin Y, Plestan E, Westervelt F, Canduas-de Wit C, Grizzle J. RABBIT: A test bed for advanced control theory. IEEE Control Systems Magazine, 2003, 23, 57−79.
[14] Westervelt E, Grizzle J, Koditschek D. Hybrid zero dynamics of planar biped walkers. IEEE Transaction on Automatic Control, 2003, 48, 42−56.
[15] Chevallereau C, Djoudi D, Grizzle J. Stable bipedal walking with foot rotation through direct regulation of the zero moment point. IEEE Transactions on Robotics, 2008, 24, 390−401.
[16] Bauby C E, Kuo A D. Active control of lateral balance in human walking. Journal of Biomechanics, 2000, 33, 1433−1440.
[17] Chevallereau C, Grizzle J, Shin C L. Asymptotically stable walking of a five-link underactuated 3D bipedal robot. IEEE Transactions on Robotics, 2009, 25, 37−50.
[18] Wang T, Chevallereau C. A new control law for a 3D biped robot based on regulation of the zero moment point and joint path. IEEE-RAS International Conference on Humanoid Robots, Nashville, USA, 2010, 27−32.
[19] Ames A D, Gregg R D. Stably extending two-dimensional bipedal walking to three dimensions. Proceedings of the American Control Conference, New York, USA, 2007, 2848−2854.
[20] Luo X, Guo R, Zhu C. An orbit based control for biomimetic biped walking. Proceedings of IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009, 19−23.
[21] Luo X, Li W, Zhu C. Planning and control of COP-switch-based planar biped walking. Journal Bionic Engineering, 2011, 8, 33−48.
[22]Bruneau O, Ouezdou F B. Distributed ground/walking robot interaction. Robotica, 1999, 17, 313−323.
|