[1] Yu M, Shen H, Dai Z D. Manufacture and performance of ionic polymer-metal composites. Journal of Bionic Engineering, 2007, 4, 143–149.
[2] Shahinpoor M, Kim K J. Ionic polymer–metal composites III, Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Material and Structures, 2004, 13, 1362–1388.
[3] Shahinpoor M. Microelectro-mechanics of ionic polymeric ionic polymeric gels as artificial muscles for robotic applications. Proceedings of IEEE International Conference on Robotics & Automation, Atlanta, GA, USA, 1993, 380–385.
[4] Shahinpoor M. Electro-mechanics of bending of ionic polymeric gels as synthetic muscles for adaptive structures. In: Carman G P, Garcia E (eds), Adaptive Structures and Material Systems, ASME Publication AD, New York, USA, 1993, 35, 11–22.
[5] Shahinpoor M. Continuum electromechanics of ionic polymeric ionic polymeric gels as artificial muscles for robotic applications. International Journal of Smart Material and Structures, 1994, 3, 367–372.
[6] Shahinpoor M. Micro-electro-mechanics of ionic polymer gels as electrically controllable artificial muscles. Journal of Intelligent Material and System Structure, 1995, 6, 307–317.
[7] Shahinpoor M, Kim K J. Ionic polymer-metal composites I, Fundamentals. Smart Material and Structures, 2001, 10, 819–833.
[8] Kim K J, Shahinpoor M. Ionic polymer-metal composites II, Manufacturing techniques. Smart Material and Structures, 2003, 12, 65–79.
[9] Nemat-Nasser S, Li J Y. Electromechanical response of ionic polymer-metal composites. Journal of Applied Physics, 2000, 87, 3321–3331.
[10] Nemat-Nasser S. Micro-mechanics of actuation of ionic polymer–metal composites. Journal of Applied Physics, 2002, 92, 2899–2915.
[11] Nemat-Nasser S, Wu Y. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms. Journal of Applied Physics, 2003, 93, 5255–5267.
[12] Kanno R, Kurata A, Hattori M, Tadokoro S, Takamori T, Oguro K. Characteristics and modeling of ICPF actuators. Proceedings of Japan-USA Symposium on Flexible Automation, 1994, 2, 691–698.
[13] Newbury K M. Modeling, Characterization, and Control of Ionic Polymer Transducers, PhD Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2002.
[14] Xiao Y, Bhattacharya K. Modeling electromechanical properties of ionic polymers. Proceedings of SPIE, 2001, 4329, 292–300.
[15] Kanno R, Tadokoro S, Takamori T, Hattori M. Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator. Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, NJ, USA, 1996, 219–225.
[16] DeGennes P, Okumura K, Shahinpoor M, Kim K J. Mechanoelectric effects in ionic gels. Europhysics Letters, 2000, 40, 513–518.
[17] Lee S, Park H C, Kim K J. Equivalent modeling for ionic polymer-metal composite actuators based on beam theories. Smart Material and Structures, 2005, 14, 1363–1368.
[18] Lee J W, Kim J H, Chun Y S, Hong S M, Yoo Y T. The performance of Nafion-based IPMC actuators containing polypyrrole/alumina composite fillers. Macromolecular Research, accepted on August 3, 2009.
[19] Wang Q, Zhang Q, Xu B, Liu R, Cross E. Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. Journal of Applied Physics, 1999, 86, 3352–3360.
[20] ANSYS Inc. ANSYS User’s Manual, Houston, PA, USA, 2005.
Taleghani B K, Campbell J F. Non-linear finite element modeling of THUNDER piezoelectric actuators. NASA Technical Report, 1999, TM-1999-209322, 1–18. |