Journal of Bionic Engineering ›› 2020, Vol. 17 ›› Issue (3): 512-522.doi: 10.1007/s42235-020-0041-4

• • 上一篇    下一篇

Learning to Identify Footholds from Geometric Characteristics for a Six-legged Robot over Rugged Terrain

Jie Chen1*, Chong Liu1, Haibin Zhao1, Yanhe Zhu2*, Jie Zhao2   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
    2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
  • 收稿日期:2019-12-19 修回日期:2020-03-04 接受日期:2020-04-09 出版日期:2020-05-10 发布日期:2020-05-18
  • 通讯作者: Jie Chen, Yanhe Zhu E-mail:chenjie@me.neu.edu.cn, yhzhu@hit.edu.cn
  • 作者简介:Jie Chen1*, Chong Liu1, Haibin Zhao1, Yanhe Zhu2*, Jie Zhao2

Learning to Identify Footholds from Geometric Characteristics for a Six-legged Robot over Rugged Terrain

Jie Chen1*, Chong Liu1, Haibin Zhao1, Yanhe Zhu2*, Jie Zhao2   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
    2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
  • Received:2019-12-19 Revised:2020-03-04 Accepted:2020-04-09 Online:2020-05-10 Published:2020-05-18
  • Contact: Jie Chen, Yanhe Zhu E-mail:chenjie@me.neu.edu.cn, yhzhu@hit.edu.cn
  • About author:Jie Chen1*, Chong Liu1, Haibin Zhao1, Yanhe Zhu2*, Jie Zhao2

摘要: Foothold identification is a key ability for legged robots that allows generating terrain adaptive behaviors (e.g., gait and control parameters) and thereby improving mobility in complex environment. To this end, this paper addresses the issue of foothold characterization and identification over rugged terrain, from the terrain geometry point of view. For a terrain region that might be a potential foothold of a robotic leg, the characteristic features are extracted as two first-order partial derivatives and two curvature parameters of a quadric regression surface at this location. These features are able to give an intuitive and, more importantly, accurate characterization towards the specific geometry of the ground location. On this basis, a supervised learning technique, Support Vector Machine (SVM), is employed, seeking to learn a foothold identification policy from human expert demonstration. As a result, an SVM classifier is learnt using the extracted features and human-demonstrated labels, which is able to identify whether or not a certain ground location is suited as a safe foot support for a robotic leg. It is shown that over 90% identification rate can be achieved with the proposed approach. Finally, preliminary experiment is implemented with a six-legged robot to demonstrate the effectiveness of the proposed approach.

关键词: six-legged robot, foothold characterization, foothold identification, geometric characteristics, support vector machine

Abstract: Foothold identification is a key ability for legged robots that allows generating terrain adaptive behaviors (e.g., gait and control parameters) and thereby improving mobility in complex environment. To this end, this paper addresses the issue of foothold characterization and identification over rugged terrain, from the terrain geometry point of view. For a terrain region that might be a potential foothold of a robotic leg, the characteristic features are extracted as two first-order partial derivatives and two curvature parameters of a quadric regression surface at this location. These features are able to give an intuitive and, more importantly, accurate characterization towards the specific geometry of the ground location. On this basis, a supervised learning technique, Support Vector Machine (SVM), is employed, seeking to learn a foothold identification policy from human expert demonstration. As a result, an SVM classifier is learnt using the extracted features and human-demonstrated labels, which is able to identify whether or not a certain ground location is suited as a safe foot support for a robotic leg. It is shown that over 90% identification rate can be achieved with the proposed approach. Finally, preliminary experiment is implemented with a six-legged robot to demonstrate the effectiveness of the proposed approach.

Key words: six-legged robot, foothold characterization, foothold identification, geometric characteristics, support vector machine