J4 ›› 2015, Vol. 12 ›› Issue (4): 624-633.doi: 10.1016/S1672-6529(14)60152-9

• 论文 • 上一篇    下一篇

Characterization of Multi-scale Morphology and Superhydrophobicity of Water Bamboo Leaves and Biomimetic Polydi-methylsiloxane (PDMS) Replicas

Huiying Guan1,2, Zhiwu Han2, Huina Cao2, Shichao Niu2, Zhihui Qian2, Junfeng Ye2, Luquan Ren2   

  1. 1. College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
    2. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
  • 收稿日期:2015-01-11 修回日期:2015-09-11 出版日期:2015-10-10 发布日期:2015-10-10
  • 通讯作者: Zhiwu Han E-mail:zwhan@jlu.edu.cn
  • 作者简介:Huiying Guan1,2, Zhiwu Han2, Huina Cao2, Shichao Niu2, Zhihui Qian2, Junfeng Ye2, Luquan Ren2

Characterization of Multi-scale Morphology and Superhydrophobicity of Water Bamboo Leaves and Biomimetic Polydi-methylsiloxane (PDMS) Replicas

Huiying Guan1,2, Zhiwu Han2, Huina Cao2, Shichao Niu2, Zhihui Qian2, Junfeng Ye2, Luquan Ren2   

  1. 1. College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
    2. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
  • Received:2015-01-11 Revised:2015-09-11 Online:2015-10-10 Published:2015-10-10
  • Contact: Zhiwu Han E-mail:zwhan@jlu.edu.cn
  • About author:Huiying Guan1,2, Zhiwu Han2, Huina Cao2, Shichao Niu2, Zhihui Qian2, Junfeng Ye2, Luquan Ren2

摘要:

The morphology and wettability of Water Bamboo Leaves (WBL) and their biomimetic replicas were investigated. The particular morphology structures of samples were characterized by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). The static wettability of samples was assessed by contact angle measurements, while the dy-namic wettability was analyzed by high speed camera system. The wettability mechanism of WBL was also explained by Cassie model. Artificial surfaces were fabricated by duplicating WBL surface microstructures using PDMS in large area (5 cm ? 3 cm). The results show the main structure characteristics of this leaf surface are sub-millimeter groove arrays, micron-scale papillae and a superimposed layer with 3D epicuticular wax sculptures hierarchical structure, and the static Water Contact Angle (WCA) of 151?±2? and Water Sliding Angle (WSA) of 4?–6? indicate that WBL surface is superhydrophobic. The combination of wax film and microstructure of WBL surface gives its surface excellent superhydrophobic property. Complex hierarchical patterns with features from sub-millimeter to micron-scale range are well reproduced. The reason for the absence of nanostructures is melting of plant epidermal wax during the curing process. The WCA values on artificial WBL and negative PDMS replica are 146? ± 3? and 137? ± 2?, respectively, demonstrating preferable hydrophobicity. Differences in wetting behavior between natural leaves and artificial leaves originate from an inaccurate replication of the chemistry and structures of the three-dimensional wax projections on the leaf surface. Nevertheless, the morphological features of the leaf transferred to the replica improve signifi-cantly the hydrophobic properties of the replica when compared with the smooth PDMS reference. This study may provide an inspiration for the biomimetic design and construction of large area roughness-induced hydrophobic and anti-sticking material surface.

关键词: biomimetic surfaces, water bamboo leaf, micro-topography, template transfer, superhydrophobicity

Abstract:

The morphology and wettability of Water Bamboo Leaves (WBL) and their biomimetic replicas were investigated. The particular morphology structures of samples were characterized by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). The static wettability of samples was assessed by contact angle measurements, while the dy-namic wettability was analyzed by high speed camera system. The wettability mechanism of WBL was also explained by Cassie model. Artificial surfaces were fabricated by duplicating WBL surface microstructures using PDMS in large area (5 cm ? 3 cm). The results show the main structure characteristics of this leaf surface are sub-millimeter groove arrays, micron-scale papillae and a superimposed layer with 3D epicuticular wax sculptures hierarchical structure, and the static Water Contact Angle (WCA) of 151?±2? and Water Sliding Angle (WSA) of 4?–6? indicate that WBL surface is superhydrophobic. The combination of wax film and microstructure of WBL surface gives its surface excellent superhydrophobic property. Complex hierarchical patterns with features from sub-millimeter to micron-scale range are well reproduced. The reason for the absence of nanostructures is melting of plant epidermal wax during the curing process. The WCA values on artificial WBL and negative PDMS replica are 146? ± 3? and 137? ± 2?, respectively, demonstrating preferable hydrophobicity. Differences in wetting behavior between natural leaves and artificial leaves originate from an inaccurate replication of the chemistry and structures of the three-dimensional wax projections on the leaf surface. Nevertheless, the morphological features of the leaf transferred to the replica improve signifi-cantly the hydrophobic properties of the replica when compared with the smooth PDMS reference. This study may provide an inspiration for the biomimetic design and construction of large area roughness-induced hydrophobic and anti-sticking material surface.

Key words: biomimetic surfaces, water bamboo leaf, micro-topography, template transfer, superhydrophobicity