[1] Meyers M A, Chen P Y, Lin A Y M, Seki Y. Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008, 53, 1–206.
[2] Wegst U G K, Ashby M F. The mechanical efficiency of natural materials. Philosophical Magazine, 2004, 84, 2167–2181.
[3] Barthelat F. Biomimetics for next generation materials. Philosophical Transactions of the Royal Society A, 2007, 365, 2907–2919.
[4] Espinosa H D, Rim J E, Barthelat F, Buehler M J. Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials. Progress in Materials Science, 2009, 54, 1059–1100.
[5] Vincent J F V, Bogatyreva O A, Bogatyrev N R, Bowyer A, Pahl A K. Biomimetics: Its practice and theory. Journal of the Royal Society Interface, 2006, 3, 471–482.
[6] Aizenberg J, Fratzl P. Biological and biomimetic materials. Advanced Materials, 2009, 21, 387–388.
[7] Ortiz C, Boyce M C. Materials science – Bioinspired structural materials. Science, 2008, 319, 1053–1054.
[8] Buehler M J, Keten S, Ackbarow T. Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Progress in Materials Science, 2008, 53, 1101–1241.
[9] Buehler M J, Yung Y C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials, 2009, 8, 175–188.
[10] Gao H J. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. International Journal of Fracture, 2006, 138, 101–137.
[11] Barthelat F, Rabiei R. Toughness amplification in natural composites. Journal of Mechanics and Physics of Solids, 2011, 59, 829–840.
[12] Barthelat F, Tang H, Zavattieri P D, Li C M, Espinosa H D. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids, 2007, 55, 225–444.
[13] Rabiei R, Bekah S, Barthelat F. Failure mode transition in
nacre and bone-like materials. Acta Biomaterialia, 2010, 6, 4081–4089.
[14] Ji B H, Gao H J. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 2004, 52, 1963–1990.
[15] Jäger I, Fratzl P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophysical Journal, 2000, 79, 1737–1746.
[16] Wang R, Gupta H S. Deformation and fracture mechanisms of bone and nacre. The Annual Review of Materials Research, 2011, 41, 41–73.
[17] Currey J D. What determines the bending strength of compact bone? Journal of Experimental Biology, 1999, 202, 2495–2503.
[18] Ritchie R O, Kinney J H, Kruzic J J, Nalla R K. A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28, 345–371.
[19] Broz M E, Cook R F, Whitney D L. Microhardness, toughness, and modulus of Mohs scale minerals. American Mineralogist, 2006, 91, 135–142.
[20] Gao H J, Ji B H, Jäger I L, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5597–5600.
[21] Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre. Proceedings of the Royal Society of London, 1988, 234, 415–440.
[22] Kotha S P, Li Y, Guzelsu N. Micromechanical model of nacre tested in tension. Journal of Materials Science, 2001, 36, 2001–2007.
[23] Rim J E, Zavattieri P, Juster A, Espinosa H D. Dimensional analysis and parametric studies for designing artificial nacre. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 190–211.
[24] Gupta H S, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17741–17746.
[25] Nikolov S, Raabe D. Hierarchical modeling of the elastic properties of bone at submicron scales: The role of extrafibrillar mineralization. Biophysical Journal, 2008, 94, 4220–4232.
[26] Dubey D K, Tomar V. Understanding the influence of structural hierarchy and its coupling with chemical environment on the strength of idealized tropocollagen–hydroxyapatite biomaterials. Journal of the Mechanics and Physics of Solids, 2009, 57, 1702–1717.
[27] Bar-On B, Wagner H D. Mechanical model for staggered bio-structure. Journal of the Mechanics and Physics of Solids, 2011, 59,1685–1701.
[28] Liu G, Ji B, Hwang K-C, Khoo B C. Analytical solutions of the displacement and stress fields of the nanocomposite structure of biological materials. Composites Science and Technology, 2011, 71, 1190–1195.
[29] Sen D, Buehler M J. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Scientific Reports, 2011, doi:10.1038/srep00035.
[30] Currey J D, Taylor J D. The mechanical behavior of some molluscan hard tissues. Journal of Zoology, 1974, 173, 395–406.
[31] Schäeffer T E, Ionescu-Zanetti C, Proksch R, Fritz M, Walters D A, Almqvist N, Zaremba C M, Belcher A M, Smith B L, Stucky G D, Morse D E, Hansma P K. Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chemistry of Materials, 1997, 9, 1731–1740.
[32] Smith B L, Schaeffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E, Hansma P K. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 1999, 399, 761–763.
[33] Sarikaya M, Liu J, Aksay I A. Nacre: Properties, crystallography, morphology, and formation. In: Sarikaya M, Aksay I A (eds). Biomimetics: Design and Processing of Materials, AIP Press, Woodbury, NY, USA, 1995, 35-90
[34] Meyers M A, Lin A Y M, Chen P Y, Muyco J. Mechanical strength of abalone nacre: Role of the soft organic layer. Journal of the Mechanical Behaivor of Biomedical Materials, 2008, 1, 76–85.
[35] Wang R Z, Suo Z, Evans A G, Yao N, Aksay I A. Deformation mechanisms in nacre. Journal of Materials Research, 2001, 16, 2485–2493.
[36] Song F, Bai Y L. Effects of nanostructures on the fracture strength of the interfaces in nacre. Journal of Materials Research, 2003, 18, 1741–1744.
[37] Chan K S, He M Y, Hutchinson J W. Cracking and stress redistribution in ceramic layered composites. Materials Science and Engineering A, 1993, 167, 57–64.
[38] Zok F W. Developments in oxide fiber composites. Journal of the American Ceramic Society, 2006, 89, 3309–3324.
[39] Evans A G. Perspective on the development of high-toughness ceramics. Journal of the American Ceramic Society, 1990, 73, 187–206.
[40] Bonderer L J, Studart A R, Gauckler L J. Bioinspired design and assembly of platelet reinforced polymer films. Science, 2008, 319, 1069–1073.
[41] Mayer G. New classes of tough composite materials – Lessons from natural rigid biological systems. Materials Science & Engineering C, 2006, 26, 1261–1268.
[42] Barthelat F. Nacre from mollusk shells: A model for high-performance structural materials. Bioinspiration & Biomimetics, 2010, 5, 8.
[43] Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O. Tough, bio-inspired hybrid materials. Science, 2008, 322, 1516–1520.
[44] Pai R K, Zhang L, Nykpanchuk D, Cotlet M, Korach C S. Biomimetic pathways for nanostructured poly(KAMPS)/ aragonite composites that mimic seashell nacre. Advanced Engineering Materials, 2011, 13, B415–B422.
[45] Budyn E, Hoc T, Jonvaux J. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Computational Mechanics, 2008, 42, 579–591.
[46] Mercer C, He M Y, Wang R, Evans A G. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomaterialia, 2006, 2, 59–68.
[47] Nalla R K, Stolken J S, Kinney J H, Ritchie R O. Fracture in human cortical bone: Local fracture criteria and toughening mechanisms. Journal of Biomechanics, 2005, 38, 1517–1525.
[48] Currey J D. Mechanical properties of mother of pearl in tension. Proceedings of the Royal Society of London, 1977, 196, 443–463.
[49] Bekah S, Rabiei R, Barthelat F. Structure, scaling, and performance of natural micro- and nanocomposites. BioNanoScience, 2011, 1, 53–61.
[50] Yourdkhani M, Pasini D, Barthelat F. Multiscale mechanics and optimization of gastropod shells. Journal of Bionic Engineering, 2011, 8, 357–368.
[51] Lawn B R. Fracture of Brittle Solids, 2nd ed., Cambridge University Press, New York, USA, 1993.
[52] Tada H, Press ASME, Irwin G R. The Stress Analysis of Cracks Handbook, 3rd ed., ASME press, New York, NY, USA, 2000.
[53] Rho J Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 1998, 20, 92–102.
[54] Qin Z, Cranford S, Ackbarow T, Buehler M J. Robustness-strength strength performance of hierarchical alpha-helical protein filaments. International Journal of Applied Mechanics, 2009, 1, 85–112. |