Journal of Bionic Engineering ›› 2020, Vol. 17 ›› Issue (3): 421-435.doi: 10.1007/s42235-020-0034-3
Xiang Liu1,2, Dekun Zhang3*, Zhiguang Guo2,4*#br#
Xiang Liu1,2, Dekun Zhang3*, Zhiguang Guo2,4*#br#
摘要: Research on antistatic superhydrophobic surfaces has attracted widespread attention in some fields. However, in the application of superhydrophobic materials, fabricating stable and practical superhydrophobic surfaces through facile and low-cost approaches still faces considerable challenges. Herein, a polyphenylene sulfide (PPS)-based antistatic superhydrophobic composite coating with a high water contact angle (166?) and a low sliding angle (2?) was fabricated on a Q345 steel surface through a simple spray-coating method without any modifier. Furthermore, the as-prepared superhydrophobic coating also displayed excellent superhydrophobicity for water droplets at different pH values, as well as self-cleaning, anti-fouling and anti-icing properties. Importantly, the superhydrophobic coating still exhibited superhydrophobicity after calcination at 350 ?C for 1 h, indicating its outstanding thermal stability. Excellent antistatic and anticorrosion properties were obtained on the prepared coating surface, which allows the coating to be applied under harsh conditions. Benefiting from the above characteristics, compared with the commercial coating, the as-obtained antistatic superhydrophobic coating may be applied more widely in related fields.