• 论文 • 上一篇
Hina Sadaf, Sohail Nadeem
Hina Sadaf, Sohail Nadeem
摘要: In this article, mathematical modeling for peristaltic flow of Rabinowitsch fluid model is considered in a non-uniform tube with combined effects of viscous dissipation and convective boundary conditions. Wall properties analysis is also taken into account. Non-dimensional differential equations are simplified by using the well-known assumptions of low Reynolds number and long wavelength. The influence of various parameters connected with this flow problem such as rigidity parameter E1, stiffness parameter E2, viscous damping force parameter E3, Brickman number and Biot number are plotted for velocity distribution, temperature profile and for stream function. Results are plotted and discussed in detail for shear thinning, shear thickening and for viscous fluid. It is found that velocity profile is an increasing function of rigidity parameter, stiffness parameter, and viscous damping force parameter for shear thinning and for viscous fluid, due to the less resistance offered by the walls but, quite opposite behavior is depicted for shear thickening fluids. It is seen that Brickman number relates to the viscous dissipation effects, so it contributes in enhancing fluid temperature for all cases.