[1] Lauga E, Powers T R. The hydrodynamics of swimming microorganism. Reports on Progress in Physics, 2009, 72, 096601.
[2] Gray J, Hancock G. The propulsion of sea-urchin spermatozoa. Journal of Experimental Biology, 1955, 32, 802–814.
[3] Higdon J J L. The hydrodynamics of flagellar propulsion: Helical waves. Journal of Fluid Mechanics, 1979, 94, 331–351.
[4] Chen B, Liu Y, Chen S, Jiang S, Wu H. A biomimetic spermatozoa propulsion method for interventional micro robot. Journal of Bionic Engineering, 2008, 5, 106–112.
[5] Behkam B, Sitti M. Design methodology for biomimetic propulsion of miniature swimming robots. Journal of Dynamic Systems, Measurement, and Control, 2006, 128, 36–43.
[6] Behkam B, Sitti M. E. coli inspired propulsion for swimming microrobots. ASME 2004 International Mechanical Engineering Congress and Exposition (IMECE2004), Anaheim, USA, 2004, 1037–1041.
[7] Gebremichael Y, Ayton G S, Voth G A. Mesoscopic modeling of bacterial flagellar microhydrodynamics. Biophysical Journal, 2006, 91, 3640–3652.
[8] Kim M J, Kim M J, Bird J C, Park J, Powers T R, Breuer K S. Particle image velocimetry experiments on a macro-scale model for bacterial flagellar bundling. Experiments in Fluids, 2004, 37, 782–788.
[9] Sakar M S, Lee C, Arratia P E. Flagellar dynamics in viscous fluids. Physics of Fluids, 2009, 21, 091107.
[10] Kim M J, Bird J C, Van Parys A J, Breuer K S, Powers T R. A macroscopic scale model of bacterial flagellar bundling. Proceedings of the National Academy of Sciences, 2003, 100, 15481–15485.
[11] Raffel M, Willert C, Wereley T, Kompenhans J. Particle Image Velocimetry: A Particle Guide, 2nd, Springer, New York, 2007, 211–221.
[12] Lawson N J, Wu J. Three-dimensional particle image velocimetry: Error analysis of stereoscopic techniques. Measurement Science and Technology, 1997, 8, 894–900.
[13] Chattopadhyay S, Moldovan R, Yeung C, Wu X L. Swimming efficiency of bacterium Escherichia coli. Proceedings of the National Academy of Sciences, 2006, 103, 13712–13717.
[14] Higdon J J L. A hydrodynamic analysis of flagellar propulsion. Journal of Fluid Mechanics, 1979, 90, 685–711.
[15] Zhang L, Peyer K E, Nelson B J. Artificial bacterial flagella for micromanipulation. Lab on a Chip, 2010, 10, 2203–2215.
[16] Purcell E M. The efficiency of propulsion by a rotating flagellum. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11307–11311.
[17] Spagnolie S E, Lauga E. Comparative hydrodynamics of bacterial polymorphism. Physical Review Letters, 2011, 106, 058103.
[18] Dominik J B, Dong L, Nelson B J, Golling M, Zhang L, Grützmacher D. Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Letters, 2006, 6, 725–729.
[19] Zhang L, Elisabeth R, Grützmacher D, Dong L, Bell D J, Nelson B J, Schönenberger C. Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts. Nano Letters, 2006, 6, 1311–1317.
[20] Zhang L, Abbott J J, Dong L, Kratochvil B E, Nelson B J. Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 2009, 94, 064107.
[21] Zhang L, Abbott J J, Dong L, Peyer K E, Kratochvil B E, Zhang H, Bergeles C, Nelson B J. Characterizing the swimming properties of artificial bacterial flagella. Nano Letters, 2009, 9, 3663–3667.
Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters, 2009, 9, 2243–2245. |