[1] Low K H. Preface: Why biomimetics? Mechanism and Machine Theory, 2009, 44, 511–512.
[2] Patar E S, Yul Y N, Edi L, Agus B. Design and implementation of paired pectoral fins locomotion of Labriform fish applied to a fish robot. Journal of Bionic Engineering, 2009, 6, 37–45.
[3] Madis L, Georg M, Deivid P, Alvo A, Maarja K. Design of a semiautonomous bomimetic underwater vehicle for environmental monitoring. Proceedings the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, 2005, 9–14.
[4] Iman B, Fotis S. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. The Journal of Experimental Biology, 2009, 212, 576–592.
[5] Low K H, Willy A. Biomimetic motion planning of an undulating robotic fish fin. Journal of Vibration and Control, 2006, 12, 1337–1359.
[6] Triantafyllou M S, Triantafyllou G S. An efficient swimming machine. Scientific American, 1995, 272, 40–48.
[7] Fish F E, Lauder G V, Mittal R, Techet A H, Triantafyllou M S. Conceptual design for the construction of a biorobotic AUV based on biological hydrodynamics. The 13th International Symposium on Unmanned Untethered Submersible Technology, Durham, New Hampshire, USA, 2003, 1–5.
[8] Trease B P, Lu K J, Kota S. Biomimetic compliant system for smart actuator-driven aquatic propulsion: Preliminary results. 2003 ASME International Mechanical Engineering Congress, Washington, D.C., USA, 2003, 43–52.
[9] Apneseth C C, Day A H, Clelland D. Hydrodynamics of an oscillating articulated eel-like structure. Ocean Engineering, 2010, 37, 1221–1232.
[10] Low K H. Design, development and locomotion control of bio-fish robot with undulating anal fins. International Journal of Robotics and Automation, 2007, 22, 88–99.
[11] Breder C M. The locomotion of fishes. Zoologica, 1926, 4, 159–297.
[12] Videler J J. Fish Swimming. Chapman & Hall, London, UK, 1993.
[13] Iman B, Fotis S. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. Journal of Experimental Biology, 2008, 211, 1541–1558.
[14] Lindsey C C. Form, function and locomotory habits in fish. In: Hoar W S, Randall D J (eds). Fish Physiology III: Locomotion, Academic Press, New York, USA, 1978, 1–100.
[15] Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 1999, 24, 237–252.
[16] Ccero R L, Vatanabe S L, Choi A, Nakasone P H, Pires R F, NelliSilva E C. A biomimetic piezoelectric pump: Computational and experimental characterization. Sensors and Actuators, 2009, A152, 110–118.
[17] Krylov V V, Pritchard G V. Experimental confirmation of the propulsion of marine vessels employing guided flexural waves in attached elastic fins. Journal of Fluids and Structures, 2007, 23, 297–307.
[18] Sfakiotakis M, Lane D M, Davies B C. An experimental undulating-fin device using the parallel bellows actuator. Proceedings of the IEEE International Conference on Robotics & Automation, Seoul, Korea, 2001, 2356–2362.
[19] Boileau R, Fan L, Moore T. Mechanization of Rajiform Swimming Motion: The Making of Robot-ray. Engineering Physics Project Laboratory, Applied Science 479 Final Report, Project Number 0159, University of British Columbia, 2002.
[20] Epstein M, Colgate J E, MacIver M A. A Biologically
inspired robotic ribbon fin. IEEE/RSJ International Conference on Intelligent Robots and Systems, workshop on Morphology, Control, and Passive Dynamics, Edmonton, Alberta, Canada, 2005, 2412–2417.
[21] Christensen B. Squid robot underwater inspector has unique propulsion, [2011-08-01], http://www.technovelgy.com/ct/ Science-Fiction-News.asp?NewsNum = 815.
[22] Takagi K. Development of a rajiform swimming robot using ionic polymer artificial muscles. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego,
California, USA, 2006, 1861–1866.
[23] Low K H. Modelling and parametric study of modular undulating fin rays for fish robots. Mechanism and Machine Theory, 2009, 44, 615–632.
[24] Alvarado P V, Chin S, Larson W, Mazumdar A, Toumi K Y. A soft body under-actuated approach to multi degree of freedom biomimetic robots: A stingray example. 3rd IEEE RAS and EMBS International Conference, Tokyo, 2010, 473–478.
[25] Hu T J, Shen L C, Lin L X, Xu H J. Biological inspirations, kinematics modeling, mechanism design and experiments on an undulating robotic fin inspired by Gymnarchus niloticus. Mechanism and Machine Theory, 2009, 44, 633–645.
[26] Clark R P, Smits A J. Thrust production and wake structure of a Batoid-inspired oscillating fin. Journal of Fluid Mechanics, 2006, 562, 415–429.
[27] Tangorra J, Anquetil P, Fofonoff T, Chen A, Zio M D, Hunter I. The application of conducting polymers to a biorobotic fin propulsor. Bioinspiration & Biomimetics, 2007, 2, S6–S17.
[28] Bandyopadhyay R. Trends in biorobotic autonomous undersea vehicles promode. IEEE Journal of Oceanic Engineering, 2005, 30, 109–139.
[29] Bandyopadhyay P R. Maneuvering hydrodynamics of fish and small underwater vehicles. Integrative and Comparative, 2002, 42, 102–117.
[30] Geder J, Palmisano J, Ramamurti R, Sandberg W C, Ratna B. Fuzzy logic PID based control design and performance for a pectoral fin propelled unmanned underwater vehicle. Proceedings of the International Conference on Control, Automation and Systems, Seoul, South Korea, 2008, 40–46.
[31] Low K H, Prabu S, Yang J, Zhang S W, Zhang Y H. Design and initial testing of a single-motor-driven spatial pectoral fin mechanism. International Conference on Mechatronics and Automation, Harbin, China, 2007, 503–508.
[32] Cai Y R, Bi S S, Zheng L C. Design and experiments of a robotic fish imitating cow-nosed ray. Journal of Bionic Engineering, 2010, 7, 120–126.
[33] Yang S B, Qiu J, Han X Y. Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish. Journal of Bionic Engineering, 2009, 6, 174–179.
[34] Liu F F, Yang C J, Su Q, Wang D H, Zhang Y Z. Simulation analysis and experimental research on the movements of biomimetic fin. Journal of mechanical engineering, 2010, 46, 24–29 (in Chinese).
[35] Wang Z L, Hang G R, Li J, Wang Y W, Xiao K. A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin. Sensors and Actuators, 2008, 144, 354–360.
[36] Zhang Y H, He J H, Zhang S W, Yang J, Low K H. A computational fluid dynamics (CFD) analysis of undulatory mechanical fin driven by shape memory alloy. International Journal of Automation and Computing, 2006, 3, 374–381.
[37] Punning A, Anton M, Kruusmaa M, Aabloo A. A biologically inspired ray-like underwater robot with electroactive polymer pectoral fins. Proceedings of the IEEE International Conference on Mechatronics and Robotics, Aachen, German, 2004, 2, 241–245.
[38] Rosenberger L J, Westneat M W. Functional morphology of undulatory pectoral fin locomotion in the stingray taeniura lymma (chondrichthyes: dasyatidae). The Journal of Experimental Biology, 1999, 202, 3523–3539.
[39] Compagno L J V. 2005. Taeniura Lymma. In: IUCN 2011. IUCN Red List of Threatened Species. [2011-02-09]. http://www.iucnredlist.org.
[40] Eschmeyer W N, Fricke R. Lymma, Raja. Catalog of Fishes electronic version. [2010-01-15]. http://research.calacademy.org/redirect?url=http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp&spid=7277
[41] Eschmeyer W N, Fricke R. Taeniura. Catalog of Fishes electronic version, [2010-01-17]. http://research.calacademy.org/redirect?url=http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp&spid=7277
[42] Froese R, Daniel P. Taeniura Lymma in FishBase. Catalog of Fishes electronic version, [2009-01-17]. http://research.cala cademy.org/redirect?url=http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp&spid=7277
[43] Gary B. Blue-Spotted Fantail Stingray Images. [2011-08-01], http://www.oceanwideimages.com/species.asp?s=Blue-spotted + Fantail + Stingray.
[44] Calvert R A. Comparative anatomy and functional morphology of the pectoral fin of stingrays. Master thesis, Duke University, Durham, NC, USA, 1983.
[45] Rosenberger L J. Pectoral fin locomotion in batoid fishes: undulation versus oscillation. The Journal of Experimental Biology, 2001, 204, 379–394.
[46] Bai S P, Low K H, Zielinska T. Quadruped free gait generation for straight-line and circular trajectories. Advanced Robotics, 1999, 13, 513–538.
[47] Webb P W. The effect of solid and porous channel walls on steady swimming of steelhead trout Oncorhynchus mykiss. The Journal of Experimental Biology, 1993, 178, 97–108.
[48] Taguchi G. Introduction to Quality Engineering, White Plains, NY: Asian Productivity Organization, UNIPUB, New York, USA, 1986.
[49] Low K H, Chong C W. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin. Bioinspiration & Biomimetics, 2010, 5, 046002.
[50] Yan Q, Han Z, Zhang S W, Yang J. Parametric research of experiments on a Carangiform robotic fish. Journal of Bionic Engineering, 2008, 5, 95–101.
[51]Wang G M. Theoretic and Experimental Research on Propulsion by Bionic Undulatory Fin. PhD thesis, National University of Defense Technology, Changsha, China, 2007 (in Chinese).
|