[1] Otte D. Evolution of cricket songs. Journal of Orthoptera Research, 1992, 25–49.
[2] Bennet-Clark H C. Acoustics of insect song. Nature, 1971, 234, 255–259.
[3] Hartley J C. Acoustic behaviour and phonotaxis in the duetting ephippigerines, Steropleurus nobrei and Steropleurus stali (Tettigoniidae). Zoological Journal of the Linnean Society, 1993, 107, 155–167.
[4] Walker T J. Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of the males. Annals of the Entomological Society of America, 1957, 50, 626–636.
[5] Thiele D, Bailey W J. The function of sound in male spacing behaviour in bush-crickets (Tettigoniidae, Orthoptera). Australian Journal of Ecology, 1980, 5, 275–286.
[6] Gwynne D T. Katydids and Bush-Crickets: Reproductive Behavior and Evolution of the Tettigoniidae, Cornell University Press, Ithaca, New York, 2001.
[7] Arak A, Eiriksson T. Choice of singing sites by male bushcrickets (Tettigonia viridissima) in relation to signal propagation. Behavioral Ecology and Sociobiology, 1992, 30, 365–372.
[8] Sales G, Pye D. Ultrasonic Communication by Animals, Chapman and Hall, London, 1974.
[9] Bennet-Clark H C. Songs and the physics of sound production. In Huber F, Moore T E, Loher W (eds.), Cricket Behavior and Neurobiology, 1989, 227–261.
[10] Elliott C J H, Koch U T. The clockwork cricket. Naturwissenschaften, 1985, 72, 150–153.
[11] Koch U T, Elliott C J H, Schäffner K H, Kleindienst H U. The mechanics of stridulation of the cricket Gryllus campestris. Journal of Comparative Physiology A, 1988, 162, 213–223.
[12] Bennet-Clark H C. Resonators in insect sound production: How insects produce loud pure-tone songs. Journal of Experimental Biology, 1999, 202, 3347–3357.
[13] Walker T J, Dew D. Wing movements of calling katydids: Fiddling finesse. Science, 1972, 178, 174–176.
[14] Zhang C X, Tang X D, Cheng J A. The utilization and industrialization of insect resources in China. Entomological Research, 2008, 38, S38–S47.
[15] Nocke H. Biophysik der schallerzeugung durch die vorderflügel der grillen. Zeitschrift fur Vergleichende Physiologie, 1971, 74, 272–314. (in German)
[16] Bailey W J. The mechanics of stridulation in bush crickets (Tettigonioidea, Orthoptera): I. The tegminal generator. Journal of Experimental Biology, 1970, 52, 495–505.
[17] Bailey W J, Broughton W B. The mechanics of stridulation in bush crickets (Tettiginioidea, Orthoptera) II. Conditions for resonance in the tegminal generator. Journal of Experimental Biology, 1970, 52, 507–517.
[18] Prestwich K N, Lenihan K M, Martin D M. The control of carrier frequency in cricket calls: A refutation of the subalar-tegminal resonance/auditory feedback model. Journal of Experimental Biology, 2000, 203, 585–596.
[19] Stephen R, Hartley J. Sound production in crickets. Journal of Experimental Biology, 1995, 198, 2139–2152.
[20] Hartley J C, Jatho M, Kalmring K, Stephen R O, Schörder H. Constrasting sound production in tettigoniidae. Journal of Orthoptera Research, 2000, 9, 121–127.
[21] Gerhardt H C, Huber F. Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions, University of Chicago Press, 2002.
[22] Fang B K, Ju M S, Lin C C. A new approach to develop ionic polymer–metal composites (IPMC) actuator: Fabrication and control for active catheter systems. Sensors and Actuators A, 2007, 137, 321–329.
[23] Yeom S W, Oh II K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Materials and Structures, 2009, 18, 085002.
[24] Chen Z, Shatara S, Tan X. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Transactions on Mechatronics, 2010, 15, 448–459.
[25] Kim B, Kim D H, Jung J, Park J O. A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Materials and Structures, 2005, 14, 1579–1585.
[26] Lee S J, Han M J, Kim S J, Jho J Y, Lee H Y, Kim Y H. A new fabrication method for IPMC actuators and application to artificial fingers. Smart Materials and Structures, 2006, 15, 1217–1224.
[27] Shahinpoor M. Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspiration & Biomimetics, 2011, 6, 046004.
[28] Biddiss E, Chau T. Electroactive polymeric sensors in hand prostheses: Bending response of an ionic polymer metal composite. Medical Engineering & Physics, 2006, 28, 568–578.
[29] Bonomo C, Brunetto P, Fortuna L, Giannone P, Graziani S, Strazzeri S. A tactile sensor for biomedical applications based on IPMCs. IEEE Sensors Journal, 2008, 8, 1486–1493.
|