[1] Goldman S. Stem and progenitor cell-based therapy of the human central nervous system. Nature Biotechnology, 2005, 23, 862–871.
[2] Johnstone A F, Gross G W, Weiss D G, Schroeder O H, Gramowski A, Shafer T J. Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology, 2010, 31, 331–350.
[3] Schmidt C E, Leach J B. Neural tissue engineering: Strategies for repair and regeneration. Annual Review of Biomedical Engineering, 2003, 5, 293–347.
[4] Heikkilä T J, Ylä-Outinen L, Tanskanen J M, Lappalainen R S, Skottman H, Suuronen R, Mikkonen J E, Hyttinen J A, Narkilahti S. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro. Experimental Neurology, 2009, 218, 109–116.
[5] Ylä-Outinen L, Heikkilä J, Skottman H, Suuronen R, Äänismaa R and Narkilahti S. Human cell-based micro electrode array platform for studying neurotoxicity. Front Neuroeng, 2010, 3, 1–9.
[6] Pine J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods, 1980, 2, 19–31.
[7] Thomas C A, Jr., Springer P A, Loeb G E, Berwald-Netter Y, Okun L M. A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Experimental Cell Research, 1972, 74, 61–66.
[8] Gross G W, Rieske E, Kreutzberg G W, Meyer A. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neuroscience Letters, 1977, 6, 101–105.
[9] Erickson J, Tooker A, Tai Y C, Pine J. Caged neuron MEA: A system for long-term investigation of cultured neural network connectivity. Journal of Neuroscience Methods, 2008, 175, 1–16.
[10] Berdichevsky Y, Sabolek H, Levine J B, Staley K J, Yarmush M L. Microfluidics and multielectrode array-compatible organotypic slice culture method. Journal of Neuroscience Methods, 2009, 178, 59–64.
[11] Wagenaar D A, Pine J, Potter S M. An extremely rich repertoire of bursting patterns during the development of cortical cultures. BMC Neuroscience, 2006, 7, 151–156.
[12] Illes S, Fleischer W, Siebler M, Hartung H P, Dihne M. Development and pharmacological modulation of embryonic stem cell-derived neuronal network activity. Experimental Neurology, 2007, 207, 171–176.
[13] van Pelt J, Vajda I, Wolters P S, Corner M A, Ramakers G J. Dynamics and plasticity in developing neuronal networks in vitro. Progress in Brain Research, 2005, 147, 173–188.
[14] van Vliet E, Stoppini L, Balestrino M, Eskes C, Griesinger C, Sobanski T, Whelan M, Hartung T, Coecke S. Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects. Neurotoxicology, 2007, 28, 1136–1146.
[15] van Kooten T G, Whitesides J F, von Recum A. Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. Journal of Biomedical Materials Research, 1998, 43, 1–14.
[16] Leclerc E, Sakai Y, Fujii T. Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomedical Microdevices, 2003, 5, 109–114.
[17] Lee J N, Jiang X, Ryan D, Whitesides G M. Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir, 2004, 20, 11684–11691.
[18] Tourovskaia A, Figueroa-Masot X, Folch A. Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies. Lab Chip, 2005, 5, 14–19.
[19] Rhee S W, Taylor A M, Tu C H, Cribbs D H, Cotman C W, Jeon N L. Patterned cell culture inside microfluidic devices. Lab Chip, 2005, 5, 102–107.
[20] Kim S J, Lee J K, Kim J W, Jung J W, Seo K, Park S B, Roh K H, Lee S R, Hong Y H, Kim S J, Lee Y S, Kim S J, Kang K S. Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 2008, 19, 2953–2962.
[21] Kim Y C, Kang J H, Park S-J, Yoon E-S, Park J-K. Microfluidic biomechanical device for compressive cell stimulation and lysis. Sensors and Actuators B: Chemical, 2007, 128, 108–116.
[22] Dworak B J, Wheeler B C. Novel MEA platform with PDMS microtunnels enables the detection of action potential propagation from isolated axons in culture. Lab Chip, 2009, 9, 404–410.
[23] Park J, Koito H, Li J, Han A. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomedical Microdevices, 2009, 11, 1145–1153.
[24] Teixeira A I, Ilkhanizadeh S, Wigenius J A, Duckworth J K, Inganas O, Hermanson O. The promotion of neuronal maturation on soft substrates. Biomaterials, 2009, 30, 4567–4572.
[25] Adewola A F, Lee D, Harvat T, Mohammed J, Eddington D T, Oberholzer J, Wang Y. Microfluidic perifusion and imaging device for multi-parametric islet function assessment. Biomedical Microdevices, 2010, 12, 409–417.
[26] Liu L, Luo C, Ni X, Wang L, Yamauchi K, Nomura S M, Nakatsuji N, Chen Y. A micro-channel-well system for culture and differentiation of embryonic stem cells on dif-ferent types of substrate. Biomedical Microdevices, 2010, 12, 505–511.
[27] Agastin S, Giang U B, Geng Y, Delouise L A, King M R. Continuously perfused microbubble array for 3D tumor spheroid model. Biomicrofluidics, 2011, 5, 24110.
[28] Khademhosseini A, Ferreira L, Blumling J, 3rd, Yeh J, Karp J M, Fukuda J, Langer R. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials, 2006, 27, 5968–5977.
[29] Abhyankar V V, Beebe D J. Spatiotemporal micropatterning of cells on arbitrary substrates. Analytical Chemistry, 2007, 79, 4066–4073.
[30] Gerecht S, Bettinger C J, Zhang Z, Borenstein J T, Vunjak-Novakovic G, Langer R. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials, 2007, 28, 4068–4077.
[31] Ungrin M D, Joshi C, Nica A, Bauwens C, Zandstra P W. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS One, 2008, 3, e1565.
[32] Cimetta E, Figallo E, Cannizzaro C, Elvassore N, Vunjak-Novakovic G. Micro-bioreactor arrays for controlling cellular environments: Design principles for human embryonic stem cell applications. Methods, 2009, 47, 81–89.
[33] Kamei K, Guo S, Yu Z T, Takahashi H, Gschweng E, Suh C, Wang X, Tang J, McLaughlin J, Witte O N, Lee K B, Tseng H R. An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells. Lab Chip, 2009, 9, 555–563.
[34] Korin N, Bransky A, Dinnar U, Levenberg S. Periodic "flow-stop" perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture. Biomedical Microdevices, 2009, 11, 87–94.
[35] Kreutzer J, Lappalainen R S, Ylä-Outinen L, Narkilahti S, Mikkonen J E, Kallio P. Laminin coated PDMS surfaces for long-term measurements of hESC-derived neural networks. Proceedings of the symposium on Microelectrode Arrays in Tissue Engineering, Tampere, Finland, 2009, 23–25.
[36] Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G. Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Experimental Cell Research, 2009, 315, 3611–3619.
[37] Villa-Diaz L G, Torisawa Y S, Uchida T, Ding J, Nogueira-de-Souza N C, O'Shea K S, Takayama S, Smith G D. Microfluidic culture of single human embryonic stem cell colonies. Lab Chip, 2009, 9, 1749–1755.
[38] Mata A, Fleischman A J, Roy S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices, 2005, 7, 281–293.
[39] Merkel T C, Bondar V I, Nagai K, Freeman B D, Pinnau I. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). Journal of Polymer Science Part B: Polymer Physics, 2000, 38, 415–434.
[40] Shih T-K, Chen C-F, Ho J-R, Chuang F-T. Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectronic Engineering, 2006, 83, 2499–2503.
[41] Xia Y, Whitesides G M. Soft lithography. Angewandte Chemie International Edition, 1998, 37, 550–575.
[42] McDonald J C, Duffy D C, Anderson J R, Chiu D T, Wu H, Schueller O J, Whitesides G M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000, 21, 27–40.
[43] Lappalainen R S, Salomaki M, Yla-Outinen L, Heikkila T J, Hyttinen J A, Pihlajamaki H, Suuronen R, Skottman H, Narkilahti S. Similarly derived and cultured hESC lines show variation in their developmental potential towards neuronal cells in long-term culture. Regenerative Medicine, 2010, 5, 749–762.
[44] Potter S M, DeMarse T B. A new approach to neural cell culture for long-term studies. Journal of Neuroscience Methods, 2001, 110, 17–24.
|