[1] Schultz H. Sea Urchins, Heinke & Peter Schutz Partner, Hemdingen, 2006.
[2] Magdans U. Mechanisms of Biomineralization of Calcite, PhD thesis, Ruhr-Universität Bochum, 2005. (in German)
[3] Magdans U, Gies H. Single crystal structure analysis of sea urchin spine calcites: Systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. European Journal of Mineralogy, 2004, 16, 261–268.
[4] Weber J N. Incorporation of magnesium into the skeletal calcites of echinoderms. American Journal of Science, 1969, 267, 537–566.
[5] Cölfen H, Antonietti M. Mesocrystals and Nonclassical Crystallization, John Wiley and Sons Ltd, Chichester, 2008.
[6] Weber J, Greer R, Voight B, White E, Roy R. Unusual strength properties of echinoderm calcite related to structure. Journal of Ultrastructure Research, 1969, 26, 355–366.
[7] Smith A B. Stereom microstructure of the echinoid test. Special Papers in Palaeontology, 1980, 25, 1–81.
[8] Stock S R, Ignatiev K, Veis A, Almer J D, De Carlo F. Microstructure of sea urchin teeth studied by multiple x-ray modes. In: Heinzeller T and Nebelsick J H (eds), Echinoderms: München, AA Balkema, Leiden, 2004, 359–364.
[9] Ma Y, Cohen S R, Addadi L, Weiner S. Sea urchin tooth design: An “all-calcite” polycrystalline reinforced fiber composite for grinding rocks. Advanced Materials, 2008, 20, 1555–1559.
[10] Donnay G, Pawson D L. X-ray diffraction studies of echinoderm plates. Science, 1969, 166, 1147–1150.
[11] West C D. Note on the crystallography of the echinoderm skeleton. Journal of Paleontology, 1937, 11, 458–459.
[12] Hessel D J F C. Influence of the Organic Body on the Inorganic, Johann Chrisitian Krieger, Marburg, 1826. (in German)
[13] Nissen H U. X-ray fabric analysis on calcite of echinoderm skeletons. Neues Jahrbuch für Geologie und Paläontologie, 1963, 117, 230–234. (in German)
[14] Märkel K, Kubanek F, Willgallis A. Polycrystalline calcite in sea urchins (Echinodermata, Echinoidea). Cell and Tissue Research, 1971, 119, 355–377. (in German)
[15] Meldrum F C, Cölfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews, 2008, 108, 4332–4432.
[16] Sethmann I, Putnis A, Grassmann O, Löbmann P. Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: A close match for biomineralization. American Mineralogist, 2005, 90, 1213–1217.
[17] Oaki Y, Imai H. Nanoengineering in echinoderms: the emergence of morphology from nanobricks. Small, 2006, 2, 66–70.
[18] Sethmann I, Hinrichs R, Putnis A. Biomineral single-crystals: Composite nano-cluster structures and polyanion-mediated growth model. Proceedings of the 9th International Symposium on Biomineralization, Santiago, 2007, 487–494.
[19] Aizenberg J, Hanson J, Koetzle T F, Weiner S, Addadi L. Control of macromolecule distribution within synthetic and biogenic single calcite crystals. Journal of the American Chemical Society, 1997, 119, 881–886.
[20] Vecchio K S, Zhang X, Massie J B, Wang M, Kim C W. Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone implants. Acta Biomaterialia, 2007, 3, 785–793.
[21] Weber J N, White E W, Lebiedzik J. New porous biomaterials by replication of echinoderm skeletal microstructures. Nature, 1971, 233, 337–339.
[22] Ha Y H, Vaia R A, Lynn W F, Costantino J P, Shin J, Smith A B, Matsudaira P T, Thomas E L. Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton. Advanced Materials, 2004, 16, 1091–1094.
[23] Bargel H J, Schulze G. Materials Science, Springer, Berlin, 2008. (in German)
[24] Kürmann H. On the fracture, hardness and annealing behavior of natural Mg-calcite. Bochumer Geologische und Geotechnische Arbeiten, 1986, 23, 1–64. (in German)
[25] Ebert T A. Growth, regeneration, and damage repair of spines of the slate-pencil sea urchin heterocentrotus mammillatus. Pacific Science, 1988, 42, 160–172.
[26] Currey J D. A comparison of the strenght of echinoderm spines and mollusc shells. Journal of the Marine Biological Association of the United Kingdom, 1975, 55, 419–424.
[27] Schinner G O, Peterlik H, Hilgers H, Kromp K. Structural design and mechanical properties in spines of spatangoid sea urchins. Biomimetics, 1995, 3, 13–30.
[28] Ebert T A. Growth and repair of spines in the sea urchin strongylocentrotus purpuratus (stimpson). Biological Bulletin, 1967, 133, 141–149.
[29] Märkel K, Röser U. The spine tissues in the echinoid eucidaris tribuloides. Zoomorphology, 1983, 103, 25–41.
[30] Oaki Y, Imai H. The hierarchical architecture of nacre and its mimetic material. Angewandte Chemie, 2005, 117, 6729–6733.
[31] Berman A, Addadi L, Weiner S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals-a study of intracrystalline proteins. Nature, 1988, 331, 546–548.
[32] Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier C, Hamaide T. Toughening of bio-ceramics scaffolds by polymer coating. Journal of the European Ceramic Society, 2007, 27, 2679–2685.
|