Journal of Bionic Engineering ›› 2023, Vol. 20 ›› Issue (5): 2240-2275.doi: 10.1007/s42235-023-00365-7
Jiaochen Chen1; Zhennao Cai1;Huiling Chen1; Xiaowei Chen2;José Escorcia‑Gutierrez3;Romany F. Mansour4; Mahmoud Ragab5,6
Jiaochen Chen1; Zhennao Cai1;Huiling Chen1; Xiaowei Chen2;José Escorcia‑Gutierrez3;Romany F. Mansour4; Mahmoud Ragab5,6
摘要: Lupus Nephritis (LN) is a significant risk factor for morbidity and mortality in systemic lupus erythematosus, and nephropathology is still the gold standard for diagnosing LN. To assist pathologists in evaluating histopathological images of LN, a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images. This method is based on an improved Cuckoo Search (CS) algorithm that introduces a Diffusion Mechanism (DM) and an Adaptive β-Hill Climbing (AβHC) strategy called the DMCS algorithm. The DMCS algorithm is tested on 30 benchmark functions of the IEEE CEC2017 dataset. In addition, the DMCS-based multi-threshold image segmentation method is also used to segment renal pathological images. Experimental results show that adding these two strategies improves the DMCS algorithm's ability to find the optimal solution. According to the three image quality evaluation metrics: PSNR, FSIM, and SSIM, the proposed image segmentation method performs well in image segmentation experiments. Our research shows that the DMCS algorithm is a helpful image segmentation method for renal pathological images.