Journal of Bionic Engineering ›› 2021, Vol. 18 ›› Issue (1): 197-209.doi: 10.1007/s42235-021-0014-2
Chao Zhou1, Jianghao Wu2*
Chao Zhou1, Jianghao Wu2*
摘要: The Flapping Rotary Wing (FRW) is a micro air vehicle wing layout coupling flapping, pitching, and rotating motions. It can gain benefits in high lift from a fast passive rotating motion, which is tightly related to the passive pitching motion directly caused by wing flexible deformation. Therefore, flexible deformation is crucial for the wing kinematics and aerodynamic performance of an FRW. In this paper, we explored the effect of flexibility on wing kinematics and aerodynamics on the basis of a mechanical FRW model. A photogrammetric method was adopted to capture motion images according to which wing orientations and deformations were reconstructed. Corresponding aerodynamic force was computed using computational fluid dynamic method, and wing kinematics and deformations were used as simulation inputs. The experimental measurements presented the real orientation and deformation pattern of a real FRW. The wing passive deformation of a high-intensity FRW was found to be mainly caused by inertial force, and a linear positive spanwise twist was observed in the FRW. The effects of wing deformation on aerodynamic force production and the underlying mechanism were addressed. Results showed that lift augment, rotating moment enhancement, and power efficiency improvement can be achieved when a wing becomes flexible. Wing spanwise twist mainly accounts for these changes in aerodynamics, and increment in spanwise twist could further contributes to aerodynamic improvement.