[1] Purcell E M. Life at low Reynolds number. American Journal of Physics, 1977, 45, 11.
[2] Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters, 2009, 9, 2243–2245.
[3] Zhang L, Abbott J J, Dong L, Kratochvil B E, Bell D, Nelson B J. Artificial bacterial flagella: Fabrication and magnetic control. Applied Physics Letters, 2009, 94, 064107.
[4] Zhang L, J Abbott J, Dong L, Kratochvil B E, Zhang H, Peyer K E, Nelson B J. Micromanipulation using artificial bacterial flagella. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009.
[5] Khaderi S N, Craus C B, Hussong J, Schorr N, Belardi J, Westerweel J, Prucker O, Rühe J, den Toonder J M J, Onck P R. Magnetically-actuated artificial cilia for microfluidic propulsion. Lab on a Chip, 2011.
[6] Martel S, Walder André. Towards swarms of communication-enabled and intelligent sensotaxis-based bacterial microrobots capable of collective tasks in an aqueous medium. IEEE International Conference on Robotics and Automation, 2009.
[7] Martel S, Mohammadi M , Felfoul O, Lu Z , Pouponneau P. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. The International Journal of Robotics Research, 2009, 28, 571–582.
[8] Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau .P Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Applied Physics Letters, 2006, 89, 233904.
[9] Behkam B, Sitti M. Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Applied Physics Letters, 2008, 93, 223901.
[10] Frankel R B, Bazylinski D A, Schüler D. Biomineralization of magnetic iron minerals in bacteria. Supramolecular Science, 1998, 5, 383–390.
[11] Brennen C, Winet H. Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 1977, 9, 339–398.
[12] Steager E B, Sakar M S, Kim D H, Kumar V, Pappas G J, Kim M J. Electrokinetic and optical control of bacterial microrobots. Journal of Micromechanics and Microengineering, 2011, 21, 035001.
[13] Calzone F J, Gorovsky M A. Cilia regeneration in Tetrahymena : A simple reproducible method for producing large numbers of regenerating cells. Experimental Cell Research, 1982, 140, 471–476.
[14] Rannestad J. The regeneration of cilia in partially deciliated tetrahymena. The Journal of cell biology, 1974, 63, 1009–1017.
[15] Rosenbaum J L, Carlson K. Cilia regeneration in Tetrahymena and its inhibition by colchicine. The Journal of cell biology, 1969, 40, 415–425.
[16] Satir B, Sale W S, Satir P. Membrane renewal after dibucaine deciliation of Tetrahymena: Freeze-fracture technique, cilia, membrane structure. Experimental Cell Research, 1976, 97, 83–91.
[17] Thompson G A, Baugh L C, Walker L F. Nonlethal deciliation of Tetrahymena by a local anesthetic and its utility as a tool for studying cilia regeneration. The Journal of cell biology, 1974, 61, 253.
[18] K?hidai L, Csaba G. Effects of the mammalian vasoconstrictor peptide, endothelin-1, on Tetrahymena pyriformis GL, and the immunocytological detection of endogenous endothelin-like activity. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1995, 111, 311–316.
[19] Kim D H, Casale D, K?hidai L, Kim M J. Galvanotactic and phototactic control of Tetrahymena pyriformis as a microfluidic workhorse. Applied Physics Letters, 2009, 94, 163901.
[20] Köhidai L, Csaba G. Chemotaxis and chemotactic selection induced with cytokines (IL-8, RANTES and TNF alpha) in the unicellular Tetrahymena pyriformis. Cytokine, 1998, 10, 481–486.
[21] Kim D H, Cheang U K, K?hidai L, Byun D, Kim M J. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabrication of microbiorobots. Applied Physics Letters, 2010, 97, 173702.
Diamandis E P, Christopoulos T K. The biotin-(strept)avidin system: principles and applications in biotechnology. Clinical Chemistry, 1991, 37, 625–636.
|