[1] Imai T, Moore S T, Raphan T, Cohen B. Interaction of the body, head, and eyes during walking and turning. Experi-mental Brain Research, 2004, 136, 1–18.
[2] Shih C L, Li Y Z, Churng S, Lee T T, Gruver W A. Trajec-tory synthesis and physical admissibility for a biped robot during the single-support phase. IEEE International Con-ference on Robotics and Automation, Cincinnati, USA, 1990, 1646–1652.
[3] Qiang H, Kajita S, Koyachi N, Kaneko K, Yokoi K, Arai H, Komoriya K, Tanie K. A high stability, smooth walking pattern for a biped robot. IEEE International Conference on Robotics and Automation, Detroit, USA, 1999, 65–71.
[4] Qiang H, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, Tanie K. Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 2001, 17, 280–289.
[5] Sugihara T, Nakamura Y. A fast online gait planning with boundary condition relaxation for humanoid robots. IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, 305–310.
[6] Seung-Suk H, Jae-Hyoung Y, Young-Joon H, Hern-Soo H. Natural gait generation of biped robot based on analysis of human's gait. International Conference on Smart Manufac-turing Application, Gyeonggi-do, Korea, 2008, 30–34.
[7] Chiang M H, Chang F R. Anthropomorphic design of the human-like walking robot. Journal of Bionic Engineering, 2013, 10, 186–193.
[8] Luo X, Xu W L. Planning and control for passive dynamics
based walking of 3D biped robots. Journal of Bionic Engi-neering, 2012, 9, 143–155.
[9] Hun-ok L, Takanishi A. Realization of continuous biped walking. IEEE International Conference on Systems, Man, and Cybernetics, Tucson, USA, 2001, 1630–1635.
[10] Kajita S, Kanehiro F, Kaneko K, Yokoi K, Hirukawa H. The 3D linear inverted pendulum mode: A simple modeling for a biped walking pattern generation. IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, USA, 2001, 239–246.
[11] Hu L Y, Zhou C J, Wu B, Yang T W, Yue Pik Kong. Loco-motion planning and implementation of humanoid robot Robo-Eectus Senior (RESr-1). IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, USA, 2007, 526–531.
[12] Yu Z G, Huang Q, Chen X C, Xu W, Li G, Li K J. On-line trajectory generation for a humanoid robot based on com-bination of off-line patterns. ICIA International Conference on Information and Automation, Zhuhai, China, 2009, 84–89.
[13] Kim E, Kim T, Kim J W. Three-dimensional modelling of a humanoid in three planes and a motion scheme of biped turning in standing. IET Control Theory & Applications, 2009, 3, 1155–1166.
[14] Peng S J, Sui H T, Ma H X. A simulation and experiment research on turning gait planning of blackmann-II humanoid robot. IEEE International Conference on Control and Automation (ICCA), Xiamen, China, 2010, 719–724.
[15] Shi G Q, Wang H, Fang B F. Online omnidirectional walking patterns generation for biped robot. International Confer-ence on Electronic Measurement & Instruments, Beijing, China, 2009, 856–861.
[16] Harada K, Miura K, Morisawa M, Kaneko K, Nakaoka S, Kanehiro F. Toward human-like walking pattern generator. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, 2009, 1071–1077.
[17] Miura K, Morisawa M, Nakaoka S, Kanehiro F, Harada K, Kaneko K, Kajita S. Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots. IEEE-RAS International Conference on Humanoid Robots, Paris, France, 2009, 596–603.
[18] Nakaoka S, Nakazawa A, Yokoi K, Ikeuchi K. Leg motion primitives for a dancing humanoid robot. IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 2004, 610–615.
[19] Nakaoka S, Nakazawa A, Kanehiro F, Kaneko K, Morisawa M, Ikeuchi K. Task model of lower body motion for a biped humanoid robot to imitate human dances. IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems, 2005, 3157–3162.
[20] Zhao X J, Huang Q, Peng Z Q, Li K J. Kinematics mapping and similarity evaluation of humanoid motion based on human motion capture. Proceedings of IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, 840–745.
[21] ASIMO, Honda Motor Co, available at:
http://asimo.honda.com/downloads/pdf/asimo-technical-information.pdf
[22] Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K. The intelligent ASIMO: System overview and integration. IEEE/RSJ International Conference on In-telligent Robots and Systems, 2002, 3, 2478–2483.
[23] Miura K, Nakaoka S, Morisawa M, Kanehiro F, Harada K, Kajita S. Analysis on a friction based "twirl" for biped robots. IEEE International Conference on Robotics and Automation (ICRA), Alaska, USA, 2010, 4249–4255.
[24] K Miura, Kanehiro F, Kaneko K, Kajita S, Yokoi K. Quick slip-turn of HRP-4C on its toes. IEEE International Con-ference on Robotics and Automation (ICRA), Saint Paul, USA, 2012, 3527–3528.
[25] Hashimoto K, Yoshimura Y, Kondo H, Hun-ok L, Takanishi A. Realization of quick turn of biped humanoid robot by using slipping motion with both feet. IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011, 2041–2046.
[26] Vukobratovic M, Borovac B. Zero-moment point- thirty five years of its life. International Journal of Humanoid Robotics, 2004, 1, 147–173.
[27] Sugihara T, Nakamura Y, Inoue H. Real-time humanoid motion generation through ZMP manipulation based on in-verted pendulum control. Proceedings of IEEE International Conference on Robotics and Automation, Washington, USA, 2002, 1404–1409. |